Icelandic Aurora

It’s just over 6-years since my last arctic adventure, which was a trip along the Norwegian coast by ship from Bergen to Kirkenes and back, stopping along the way for deliveries and pick-ups at 30-ports.  On that occasion we had good views of the Aurora Borealis whilst at sea somewhere north of the Arctic Circle and with some difficulty, I was eventually able to obtain some images (see below). Standing outside on ther deck at +70o North latitude in February was incredibly cold, making camera operation difficult, whilst the ship’s movement from side-to-side and up-and-down was hardly conducive to photography of the night sky!

This time, I’m just back from circumnavigating the island of Iceland by car from mid to late-March, which is described more fully on my other website Round The Bend here.  It was timed to avoid the worst of winter conditions and, with darkness quickly disappearing as Spring / Summer beckoned, maybe still get a chance to see and image the Northern Lights again – this time on terra firma.  Despite such planning, severe snow, ice and very strong winds were common for much of the time but, when it was clear the scenery was spectacular and, on a couple of evenings later in the trip, the Aurora Borealis put on a great show.

Situated just below the Arctic Circle, mostly between 64o and 66o latitude, Iceland is well known both for its geology and sightings of the Aurora Borealis or Northern Lights.  As a geologist, I travelled to Iceland primarily to view the rocks and though it was getting late in the season, I was also keen to see the Aurora again if possible.  Given the days of bad weather it was therefore fortunate to have clear skies and good views of the Northern Lights on two separate evenings whilst on the south coast, first at Gerdi near Jökulsárlόn and later just south of Kirkjubaejarkklaustur.

Despite my previous experience, each aurora is different and on this occasion I found using a Canon 700D DSLR mounted on a Gorilla Pod, using a Sigma wide-angle lens set at a focal length of 10mm f3.5 + ISO 3,200 and 10 second exposures generally produced a good image.  It seemed that we were on the southern edge of the aurora on the first night at Gerdi (see top of the page), which was therefore weaker but exhibited a striking purple colour (helium).  The following night the aurora was much stronger, this time mostly green (oxygen) with red and purple fringing (nitrogen & helium) and generally much more active, resulting in some great views with the naked eye and even better images (see below).

Reflections 2020

After starting astronomy in 2014, Watch This Space (Man) was launched shortly thereafter as a personal record of my then nascent astronomy journey.  Apart from the main blog about my progress or otherwise, links to other astrophotographers, astronomy tools, astronomy weather, scientific papers etc. can also be found on this website; I was suprised to see that to-date 152 items have been published on this site.

I always like to hear from others – comments, questions, help or just to say hello – and can be contacted via: graham.s.roberts@gmail.com  or just leave a comment at the end of any item if you prefer.

Vistor map 2020: In this most difficult of years for everyone, it’s especially heartening to see so much interest from all corner’s of the world and hope to see you and others again in 2021 – Clear Skies!

REFLECTIONS is a review of my astronomy and astrophotography during the past year, together with some thoughts on possible future developments.  

2020 Overview, Images & Goals for 2021

For the world 2020 was a year like no other.  Notwithstanding the obvious problems and dire consequences of Covid-19 for everyone, there have been surprising benefits for astronomy.  Although I am retired, under lockdown there was even more time available for hobbies.  Furthermore, as I live close to Gatwick and Heathrow airports + underneath numerous high altitude long-haul overflight paths, a massive reduction in air travel resulted in a very obvious improvement in seeing conditions, which was confirmed by guiding results.  Located in a Bortle 5 to 6 area I ordinarily achieve at best average RMS error guiding of 0.90” to 1.50”/pixel, guiding improved markedly during lockdown to between 0.50” to 0.75”/ pixel.  Of course such seeing conditions also resulted in better quality imaging itself and on a number of occasions I was able to achieve integration times of 10-hours or much more over a number of nights.  The result was better images but less of them and inevitably, a lot more cloud throughout the rest of the year!

Having previously got to grips with plate solving, using the new CdC planning function I intended to develop the use of mosaics this year.  However, such is the weather in the UK (see above) that it’s obvious to me that creating mosaics is probably not the best use of what imaging time we get.  Undeterred, during January I planned and shot a 15x panel mosaic of Barnard’s Loop in Ha-wavelength.  Unfortunately the unpredictable occurrence of patchy cloud invalidated some of the panels, though I was finally able to compile a 7x panel mosaic of the upper easterly section of Barnard’s Loop – see below.  Notwithstanding, there were lessons learned: (i) restrict mosaics to one or two panels and / or (ii) where wider view images are required use a wide FOV set-up rather than a large mosaic.

Most of my other objectives for 2020 turned out to be pipedreams e.g. a new observatory or perhaps a larger telescope or dual rig.  Despite this there were important developments on other fronts.

After eventually coming to the conclusion that mosaics were probably an unwise way to go considering UK conditions, it became clear that a suitable high-quality camera lens might produce similar coverage with less imaging time and hassle.  Thus also inspired by the images of others on the SGL Forum using such equipment, I set out to build a new rig based around the excellent Samyang 135 f2 lens.  This project remains work-in-progress but so far using the lens with a bespoke 3D printed rig and micro focuser made by Astrokraken and a modded DSLR, it’s apparent that this lens produces excellent widefield images in a relatively short time.

Initial Samyang 135 f2 set-up with modded DSLR

With the time and ‘opportunity’ afforded by lockdown throughout most of the year, I finally decided to do something about improving my processing, namely learning PixInsight.  Unfortunately the rumours were correct – it is a steep learning curve and altogether a less than user friendly software.  However, after many weeks of toil and expletives I’m pleased to say I can now process an entire image with PixInsight, the impact of which has been nothing less than profound.  However, whilst PixInsight is an excellent processing facility, I’ve come to the conclusion that it is often best used together with other process software where appropriate for specific tasks:

  • Deep Sky Stacker for calibration, alignment and stacking; the equivalent PixInsight process is just too complicated and time consuming;
  • Photoshop can be very helpful finessing colours and stretching (Levels & Curves);
  • Starnet++ is useful for creating starless images, which then help to get the best from processing nebula separately before re-combining with the stars;    
  • Topaz AI Denoise has been very effective and easy to use for noise reduction and sharpening at any point during the workflow.                      

This combination for processing has turned out to be something of a game changer and almost certainly was the most important astrophotography development of the year for me, which augurs well for 2021 and beyond. 

Favourite Images

Continuing with the theme of less is more, I imaged just 13 objects this year – of which three were experimental & three with a DSLR – but still with a total integration time of 80 hours (2019 17 objects & 65 hours, 2018: 25 objects & 43 hours).  Having worked through many of the astronomer’s favourites by now, images in 2020 consisted of: a new approach to old favourites, difficult / small objects for my equipment e.g. galaxies or less popular and widefield targets. 

I’m pleased to say that most of these images turned out well and it’s difficult to choose a favourite.  The so-called ‘favourites’ below therefore represent those images from this year that portray an important development in my astrophotography journey. More detailed reviews of these and all other images from 2020 can be found in specific articles that can be accessed using the links found below or via the Blog Index, located under the dropdown menu ABOUT.  

Heart Nebula: Although imaged in 2018, this version has been re-processed using mainly PixInsight, thus transforming the original SHO Hubble Palette image from something rather dull to one with warm, vibrant colours, as well as much great detail – demonstrating the significant impact of my new PixInsight based processing abilities.   

LBN 325: Numerous emission nebulae populate this small part of a very extensiveHII-Region, which forms an exciting LRGB image.  Processing was complex and difficult, in order to bring out exciting features that abound in this spectacular but less popular area of the Cygnus constellation. Integration time of 10-hours was obtained over three nights and is my first LRGB image processed using PixInsight.       

M63 Sunflower Galaxy:  At 12.6’ x 7.2’and apparent magnitude of +9.3,this small flocculent galaxy in the Canes Venatici constellation is a challenge for my equipment. However, with 8 hours 20 minutes exposure over three nights in April and careful processing, the all-important detail within the galactic disc is clear.  Topaz Denoise AI and Gigapixel software played an important role in maintaining the colour and delicate detail in this +50% cropped image.     

Taken from last year’s REFLECTIONS 2019:

“Although you never know, I don’t see any major breakthroughs in the coming year”.  Just goes to show what I know, fewer but better images were obtained in 2020:

RECORD CARD 2020

GoalSpecifics / ResultsOutcome
Improve image captureFurther Improvements in overall quality + much longer integration times + better guiding accuracy = less but better images.MUCH BETTER    
Better processingUsing PixInsight software combined with Photoshop, Starnet++ and Topaz Denoise AI has led to major processing improvements and much better final images.      MUCH MUCH BETTER  
Widefield ImagingInitial results from new imaging rig based around Samyang 135 f2 lens were very promising but there’s more to do.BETTER    

My main objectives for 2020 were largely fulfilled (see above), so what about 2021?

  • Imaging:  Other than maintaining the aforesaid improvements achieved over the past two years – guiding & longer integration times – two items that still need to be addressed are: (i) upgrade filters to remove star bloating and all round better images, (ii) improved focussing.   
  • Widefield: Complete Samyang-rig build and switch from DSLR to CMOS mono camera.  
  • Consolidate processing improvements: Whilst the move to PixInsight and other software was very successful in 2020, I’m still only scratching the surface of what’s possible.
  • Upgrade mono camera – there’s a new generation of colour CMOS cameras starting to appear, hopefully soon to be followed by their mono equivalents !

Hardly a year I and the rest of the world will want to remember, though more than ever astrophotography played a big role in providing relief from the trauma going on around us all. 

The major increase of integration times achieved and the use of PixInsight has proved transformative for my astrophotography and will justify returning to reimage some old favourites in future years.  I had often thought about upgrading my OTA to something bigger but given the lack of a permanent observatory here at Fairvale Observatory, combined with long periods of bad / cloudy weather, the penny finally dropped and I now have high hopes for the little wonder that is the Samyang 135 f2 lens when I complete its set-up in 2021.                

Looking back I have to be happy with my astrophotography in 2020 but more importantly, look forwards to an even better year which holds great promise building on the positive developments of the past 24-months.  Moreover, I hope for the sake of everyone that we will be able to deal with Covid-19 soon and return to something of a normal life once again.  These are big ambitions and I hope that WTSM’s Reflections 2021 will record such success.

Watch this space!

 

ASTROPHOTOGRAPHY INDEX OF 2020

To access each blog, click on the title required below highlighted in RED:

JANUARY & FEBRUARY – Jinxed: Barnard’s Loop Mosaic (+ NGC 1333 reflection nebula & LDN 1622 Bogeyman Nebula)

MARCH – Nice but Dim: Medusa planetary nebula / Abell 21

MARCH & APRIL – Return of the Lion: Leo Triplet M65, M66 & NGC 3628

MAY – Galactic Bloom: M63 Sunflower Galaxy

JUNE – Canine Capers: M51 Whirlpool Galaxy

AUGUST & SEPTEMBER – The Big Picture: First Light Samyang 135 f/2 NAN, Cygnus & Veil Nebula 

OCTOBER – Reach For The Sky: LBN 325 emission nebula

NOVEMBER – Swan Adventures: NGC 6914 reflection nebula

DECEMBER – Image Redux: HST re-processing – Pacman, Heart, Rosette, NAN & California Nebula

Howling Wolf

lunar eclipse mosaic 210119x

I have a theory that at or about the time of each full moon the night sky is almost always clear, I don’t have the data but it just seems that way most of the time.  As an astrophotographer I am more than usually aware of the full moon as it makes all except narrowband imaging impossible, when it floods the night sky with its brilliant white light.  Apart from a brief and somewhat futile attempt on 14th December – the Moon and mixed cloud curtailed imaging on that occasion – my last astronomy at Fairvale Observatory was on the 17th October, thereafter being plagued by persistent cloud and bad weather; after a promising start at Les Granges Observatory in early November no further astronomy was possible during the rest of the week due to cloud and poor weather conditions.  I’m beginning to think I need a new hobby, one that is not weather dependent at least!

Given the disappointing lack of astronomy conditions I paid little attention to the upcoming lunar eclipse on the early morning of 21st January.  However, as the day approached various weather forecasts were inevitably mixed but at least two out of five held some promise of clear skies during part of the eclipse.  I therefore started to at least undertake some preliminary planning, only to discover that much of the eclipse might be obscured by houses and tall trees to the west of my location; Plan-B was to travel to nearby Reigate Priory Park which has a decent westerly outlook closer to the horizon.

As it turned out on the 20th a clear, sunny but cold and clear day preceded a clear evening and at about 3 a.m. on the 21st shortly before the action was due to start, the sky was still clear, thankfully proving my theory correct on this occasion.  Furthermore, my concerns over obscured views turned out to be mostly unfounded, with the Moon higher in the sky than envisaged and good sightlines up until the end of totality, at which time the cloud eventually rolled in anyway.  As a result I was able to enjoy over two hours viewing and imaging time, which encompassed the entire penumbral and totality stages of the eclipse.

Having obtained excellent images of the last lunar eclipse on 28th September 2015, tracking with a DSRL and the William Optics GT81 + another static, tripod fitted DSLR and 250mm zoom lens, this time I decided to adopt a different, more mobile set-up, in case Plan-B was necessary.  In 2017 I purchased a Canon 300mm f/4 L-Series telephoto lens to use for astronomy and wildlife photography.  The Canon’s Series-L lenses are a high quality, professional line especially made for APS-C cameras such as the 700D.  With no less than 15 lens elements and a fixed focal length, the picture quality for terrestrial imaging is fantastic, further assisted by a very accurate and quite image stabilizer.

This time I mounted the lens directly onto the tripod, with the camera further back so as to provide good balance between the two components.  As the autofocus and IS functions cannot be used in a dark sky for astrophotography, focus can be tricky and a compromise is required between the aperture setting for sharpness and a low ISO for quality.  As I discovered last time, the light quality diminishes significantly whilst the eclipse progresses across the face of the Moon and the aforesaid settings need to be constantly adjusted to compensate, especially during totality.  In the end I was pleased with the outcome of imaging the so-called Super Blood Wolf Moon (see mosaic above and image below).

img_1235x

As pleasing as imaging the eclipse is, like a solar eclipse viewing is an entirely different experience.  It is a pleasure to just watch the whole phenomena play out but the dramatic changes of light also has a profound effect on both the night sky itself and, in particular, the very nature of the Moon as perceived by the naked eye. On a clear night the full moon floods the night sky with its very bright light, thereby effectively hiding all but the very brightest of stars from view.  As the penumbral stage progresses (see diagram below) for about an hour the dark night sky is slowly revealed in all its glory, it’s as if someone has pulled the curtains and a new world has appeared.

total-lunar-eclipse-jan-2019-plot

Furthermore, as the moon darkens and eventually enters totality it takes on a completely different and eerie feeling, as well as a red hue caused by Raleigh scattering.  As is often the case with astrophotography the camera sensor is able to capture much greater colour and detail than the naked eye can see, thus producing beautiful images of one of nature’s best shows.  However, to the naked eye the moon takes on a different, somewhat strange nature during totality – something of a 3D effect occurs as it seems to float in the night sky like a big red balloon – something that an image cannot ever capture, making the night time adventure more exciting and worth all the effort.

Lunar eclipses are not that rare but we now have to wait 10-years for the next one in the UK which will take place on 20th December 2029, with or without cloud!

IMAGING DETAILS
Object Lunar eclipse – Super Blood Wolf Moon
Distance <238,000 miles (30,000 miles closer than usual)
Size 31’or 1/2o  
Apparent Magnitude -12.74  @ mean full moon
 
Scope / Lens  Canon L-Series 300mm f/4
Mount Manfrotto tripod
Camera Canon 700D  
Capture & Processing Manual, Photoshop CS3- Extended
Exposures x50:  Penumbral f/8   1/125’   ISO 100     Totality f/5.6  0.80’   ISO 400    
    
Location & Darkness Fairvale Observatory – Redhill – Surrey – UK        Typically Bortle 5
Date & Time 21st January 2019 @ approx. 03.30h  
Weather <= 1oC   RH <=95%                  🌙   Eclipse

Other Worlds

GR Final HaLRGB

Apart from the simple enjoyment of travel, it often opens the potential for new opportunities and experiences that more profoundly broadens one’s horizons; I’ve travelled extensively during my life which has been enriched accordingly.  Earlier this month I visited astrophotographer Oliver (Olly) Penrice at his Les Granges Observatory in the Hautes-Alps region of Provence in France, with the objectives of imaging with a more favourable dark sky and to learn from Olly’s experience.

Les Granges Location (Medium)

Situated deep in the mountains and very much off the beaten track, Les Granges is in the small (28 people) hamlet of Ètoile-Saint-Cyrice, some way from Peter Mayle’s better known Provence but nonetheless itself interesting and beautiful, with some wonderful geology to boot; after all my wife and I are also geologists.

IMG_1046 (Medium)

Area immediately north east of Etoile-Saint-Cyrice

IMG_1066 (Medium)

Spectacular monocline rock folding at Sisteron

Subject to time and conditions, I particularly wanted to image a target that could not be achieved at home, either because it cannot be seen from my location or is beyond the capabilities of my equipment. Before leaving for France I therefore researched the projected night sky at Les Granges and developed a short list of potential targets, number one of which was a spiral galaxy.  At the moment my equipment struggles with these faint fuzzies and I’ve long wished to bag a good image of a ‘proper’ galaxy.  With galaxy season still a few months off the choice was limited but it soon became clear that M74, the Phantom Galaxy would provide such a target: it is not commonly imaged, is somewhat faint and difficult to see but is a classic, face-on spiral galaxy – just right for Guy Fawkes Night on November 5th too!

M74 at les granges 051118 10pm

Olly’s imaging equipment consists of a Takahashi FSQ106Ns rig and a more suitable TEC 140 f/7 refractor, which when matched with an Atik 460 CCD camera was just the job for the proposed task.  Outstanding night skies at the Les Granges Observatory are commonplace, with SQM values in excess of 22 but it was raining when we arrived and the outlook seemed less than perfect.  Notwithstanding, the next two nights were clear in the early evening and so on the first night we managed to obtain 3-hours of RGB subs, followed by nearly 2.5 hours of Ha and Luminance data the following evening.  Whilst imaging we also spent time observing, in these conditions Andromeda Galaxy was clearly visible with the naked eye but using the 14″ Meade LX200 which Olly inherited from the late Alan Longstaff other objects such as M27 and M33 came to life in the eyepiece.

IMG_20181108_115731653 (Medium)

Does what it says on the tin – entrance to Les Granges observatory

Sadly the rain returned thereafter and this turned out to be the only window of opportunity for the rest of the week!  Thankfully Olly has a vast wealth of data that included some of M74, from which we were able to bolster our meagre data from the first two evenings of imaging the same object.

Since returning home I’ve worked on the recently acquired data again and am pleased with the resulting image, shown at the top of the page.  In particular, the addition of Ha-wavelength light has brought the galaxy to life where it highlights areas of star formation located within the spiral arms, in the form of distinctive areas of magenta coloured red spots – a characteristic sign of such activity within galaxies.  Olly also produced an alternative image by combining data from the aforesaid recent image with additional data previously taken with an ODK 14 inch scope.  This resulted in a total integration time of some 17-hours and produced a stunning image of M74 that I’m pleased to say I played a small part in (see below).

M74 ODK with TEC STARS HaLRGB Crop

It was disappointing that much of the time at Les Granges was spoilt by poor weather but I was able to use some of that time on processing techniques with Olly and just enjoying the wonderful ambiance that comes from being in such a location.  I hope to return again some time in order to enjoy the beauty of the area and the night sky that can be seen – when it’s not cloudy.  In the meantime, I’m more than pleased to catch some photons from another world of another world, which has resulted in stunning images of a spiral galaxy – at last.

  IMAGING DETAILS
Object M74 Phantom Galaxy
Constellation Pisces
Distance 30-million light-years
Size 10.5’ x 9.50’     
Apparent Magnitude +10.0
   
Scope  TEC 140   FL 980 mm   f7.00      (+ADK 14”)
Mount Mesu 200
Guiding PHD2 
Camera Atik 460 CCD  Pixels 4.50 ɥm
  FOV 43.80’ x 35.04’  Resolution 0.96”/ pixel     
Capture & Processing Atik software capture, Astroart pre-processing, PixInsight and Photoshop CS3 post processing
Image Location RA 01:36:41    DEC 15:47:01                       
Exposures 6 x 600sec RGB + 5×900 sec L & Ha  = 320 minutes  @ -20o
Location & Darkness Ètolie-Saint-Cyrice, Hautes-Alps Provence, France        SQM <=21.50 – 22.00
Date & Time 2nd & 3rd November 2018 @ +20.30h  
Weather <=8oC    RH% high

Reflections – 2017

Following some important developments, I think it’s fair to say that the past year has hopefully marked an appreciable turning point for my astrophotography.  Reflections is a summary of my astronomy last year, in particular astrophotography, as well as some thoughts about how I hope to progress in the 2018.

I’m again pleased that there is continuing interest in Watch This space (Man) – A personal discovery of the Universe through astronomy and astrophotography.  This is a personal journey and I’m glad to see there is also regular activity in many of the older blogs, which altogether illustrate what I expect many others have experienced during their own personal journeys? For those starting out or with related interests, I hope they will find these pieces interesting, instructive and perhaps even inspiring; it’s not an easy hobby but when it works – it usually does with patience, perseverance and help from the wider community –  the experience is  very rewarding, often exciting and mostly fun.

I’m aware that many of my blogs can sometimes be on the long side, that’s because I want to thoroughly document and discuss the matters rather than superficially comment on them.  However, I am mindful that from time-to-time there are issues that can best be covered in a more concise manner or just events that speak for themselves and can therefore be brief, for which purpose I have now introduced the AstroBites section.  Unfortunately, despite the best of intentions, I’ve so far only used this item occasionally but hopefully will rectify the situation next year.

I’m always tinkering with the website, so even if you’re a regular visitor take a look around from time-to-time.  There is a photo gallery but for a simpler view of some of my better images I’ve recently added a FLICKR album, which is accessible from the Gallery menu.  The sharp eyed may also note that in response to new imaging techniques, I have changed the image and technical details summary for each picture; I find this information invaluable when looking at other astrophotographer’s images, as it can be very helpful when starting out in general or when using similar equipment or imaging the same object for the first time.

Once again the site attracted much interest from all corners of the world, which are summarised in the map below.  Please do get in touch if you have and relevant thoughts, queries or just to say – hello – contact details are in the ABOUT section of the main menu.

WTSM Heat Map

Reflections Crop

JANUARY TO MARCH

After overcoming some major technical problems that almost brought my nascent hobby to a premature end in 2016, I felt I needed to consider what would be the best way forwards thereafter.  My initial inclination was a larger telescope in order to get at those faint fuzzies but most of all I just wanted better quality images.  In the past this would inevitably result in acquiring a CCD mono camera and all that means in terms of very exacting technical issues and very long exposures, neither of which I was prepared to take on, or at least only to a degree – life’s too short and the UK weather too cloudy!

However, during the latter part of 2016 something of a game changer was emerging in the world of astrophotography and after following developments online for a few months, I was persuaded that the new ZWO1600MM-Cool mono camera could also give me what I wanted, without many of the issues of a conventional CCD camera.  As a result I purchased the aforesaid camera and matching x8 EFW just before Christmas in 2016  and eagerly awaited clear skies in the New Year.  Unfortunately it wasn’t that simple – now there’s a surprise!

The crucial benefits of the new CMOS based ZWO camera are three-fold: (i) very low read noise and high sensitivity achieved with, (ii) relatively short exposures – sometimes as little as 30 to 60 seconds, (iii) larger field-of-view compared to a CCD. Wow!  Unfortunately there was still much to sort out, notably the image train, image capture and processing, all of which differ considerably from a DSLR camera.  Notwithstanding, eventually first light (see image below) was achieved in March and it was immediately obvious that this was going to fulfil my astrophotography dreams and more for now – hopefully!

Picture saved with settings embedded.

Rosette Nebula in Ha | William Optics GT81 + ZWO ASI 1600MM-Cool & 0.80 focal reducer guided | 15 x 180 secs + darks & bias calibration Gain 300, Offset 10 | 21st March 2017

Using mostly narrowband filters – more on that later – I was initially able to obtain some exciting and very promising images of classic HII-region objects just before they disappeared over the western horizon; thereafter followed weeks of frustration whilst I waited for other suitable objects to appear – timing is everything.  The ZWO1600 camera is very good for most deep sky objects, nebulae, galaxies and globular clusters but with the William Optics GT81 the combination is best suited to larger targets.  As a result by late winter and early spring, when smaller objects such as galaxies dominate the night sky, it became necessary to find something else to do for the next few months.

Aurora Borealis Northern Norway February 2017 I’ve previously worked north of the Arctic Circle in Sweden and Russia but in February I took a more relaxed ferry trip along the west and north coast of Norway from Bergen to Kirkenes, close to the Russian border.  Given the time of year it was of course very cold and the nights long but the ship was comfortable and the scenery spectacular.  However, once north of Tromsø the real show began in the form of the Aurora Borealis AKA the Northern Lights.  This natural light show lived up to expectations and with some difficulty I managed to obtain numerous images of the spectacle – the problem being imaging from a moving ship in severe cold, which with wind chill was well below -20oC – but it was worth it and made for an exciting end to my winter astrophotography.

No Date Type* Object Name
1 20/01/17 DSLR M45 Pleiades
2 20/01/17 N NGC 2244 Rosette Nebula
3 22/01/17 DSLR M45 Pleiades
4 22/01/17 N IC 434 Horsehead & Flame Nebula
5 21/03/17 N NGC 2244 Rosette Nebula
6 21/03/17 B M65 Leo Triplet
7 24/03/17 B NGC 4874 Coma Cluster
8 25/03/17 N M42 Orion Nebula
9 27/03/17 N IC 434 Horsehead Nebula

Record of quarterly photographic images taken in 2017

*Type: DSLR colour, B Broadband LRGB, N Narrowband Ha-OIII-SII, V Video

APRIL TO JUNE

The period from April until the end of July can be a frustrating time of the year for astronomers, except those with an interest and the equipment for solar imaging.  Other than just giving up for a while, the secret is to abandon normal pursuits and just make the best of whats on offer, which is exactly what I did this year.  After limited success  attempting some of the larger galaxies in early Spring, I moved on to webcam imaging Jupiter and Saturn, insofar as is possible with my small telescope.  At about this time I also managed to capture the comet C/2015 V2 (Johnson), my second one after previously imaging C/2014 Q2 Comet Lovejoy in early 2015.  As I had not attempted such objects for more than two years and was more than a bit rusty with the different imaging and processing techniques, the results were varied but is was still good fun, which I hope to repeat in 2018 depending on what’s around at the time.

I also used the much improved weather and extra spare time afforded to go over the basics of my mount-telescope-computer set-up: balance, leads, equipment alignment, computer updates etc.  I inspected and replaced some old cables, wherever possible using cold-resistant silicon leads.  Following last year’s catastrophic camera power lead failure, I am now aware of the damage that cold can do to cables and pay greater attention in order to avoid repeating such problems.  I was also aware that with the change to the ZWO camera and using autoguiding routinely there had been a noticeable increase in cables, which I therefore tidied and strapped with Velcro bands to restrict unnecessary movement and snagging.

IMG_20170324_194502542 (Medium) The overall impact of these changes has transformed my working practices, making set-up and dismantling quicker, more efficient and more effective, itself a huge improvement.  In addition, I’ve also been able to move the mount and image capture controls indoors, which being more convenient and comfortable has made operating conditions and results much better.  Astrophotography inevitably becomes more complex and working in a warm environment with access to a cup of tea really does improve the outcome when working, in particular when resolving problems.  Given the significant benefits achieved from this housekeeping, in the future I intend to repeat this exercise each summer – it really pays off.

Veil SHO GxCcropHub

Eastern Veil Nebula in SHO – for Will| 21st June 2017

Notwithstanding these virtues, by June I was eager to start imaging again with the ZWO1600MM-Cool and with good weather and some very late nights I was able to obtain a few narrowband subs of the Eagle and North America nebulae.  To my surprise on the morning of 21st June I even briefly managed to image the Eastern Veil Nebula in narrowband; who would have thought imaging the Veil on the Summer Solstice?  Once again the results of just a few subs from the new camera continued to show great promise.

No Date Type* Object Name / Type
10 02/04/17 B NGC 2903 Galaxy
11 02/04/17 B M61 Galaxy
12 18/04/17 B NGC 4438 Markarian’s Chain
13 14/0517 V Jupiter Video Sequence
14 25/05/17 V Jupiter Video Sequence
15 26/05/17 DSLR Comet C/2015 V2
16 11/06/17 V Saturn Video Sequence
17 14/06/17 V Jupiter Video Sequence
18 19/06/16 N M20 Eagle Nebula
20 20/06/17 N NGC 7000 North America Nebula
21 21/06/17 N NGC 6992 Eastern Veil Nebula

JULY TO SEPTEMBER

After a taste of the ZWO1600MM-Cool at the start of the year and briefly around the Summer Solstice, the end of July finally brought the return of astronomical darkness, more suitable DSO targets and at last the opportunity to get serious with narrowband and broadband imaging.  Combined with some exceptionally good weather and clear skies this period was very productive and successful.  Without plate solving the maximum imaging time I can achieve at the moment is about two hours before or after the Meridian but using a high Gain of 300, 180 second exposures and autoguiding, for the first time I was able to get some very decent subs of various nebulae – now it was really getting exciting!

At the time of purchase I wavered between the ZWO EFW x5 filter or the soon to be released alternative x8 version and in the end waited for the larger version, together with the matched LRGB, Ha, OIII and SII filter bundle.  There were initial problems controlling the EFW and camera, inevitably resolved after some time with a new driver code but in the end the x8 EFW and camera have proved to be an excellent combination.  I have especially found narrowband imaging to be a revelation and when possible have so far mostly concentrated on this technique; its use when the Moon is about is an added and somewhat pleasing bonus.  The detail shown in Ha-subs can often be quite spectacular and for the best results I’ve discovered that more aggressive stretching is needed.

Picture saved with settings embedded.

To my surprise, I’ve so far found LRGB broadband imaging more difficult than expected, both to capture and in post-processing.  It’s apparent that Gain and Offset settings are more critical than narrowband, perhaps because such objects tend to be brighter, with more contrast and often greater complexity?  I had been looking forwards to imaging the Andromeda Galaxy in LRGB and as is often the case with M31, first thought that my subs were overblown.  However, after dialling down Gain, Offset and exposure time the alternative result was even more disappointing.  It was instructive that by returning to the original data and applying greater care during processing, I was able to tease a good image from the subs after all.

No Date Type* Object Name / Type
22 27/07/17 N M20 Trifid Nebula
23 31/07/17 N NGC 6960 Western Veil Nebula
        & Pickering’s Triangle
24 10/08/17 N IC 5070 Pelican Nebula
25 11/08/17 N IC 1318 SADR Region
26 11/08/17 N NGC 6888 Crescent Nebula
27 13/08/17 DSLR Perseids  
28 19/08/17 N NGC 6995/ NGC 6992 Eastern (Bat) Veil Nebula
29 20/08/17 B M15 Globular Cluster
30 27/08/17 N NGC 7000 North America Nebula
31 28/08/17 B M31 Andromeda Galaxy
32 28/08/17 B M33 Pinwheel Galaxy
33 15/09/17 DSLR Milky Way  

OCTOBER TO DECEMBER

From the experience of the new camera to-date I had arrived at two critical questions:

  • What are ‘right’ Gain and Offset settings?
  • What are the ‘best’ methods for LRGB imaging and post-processing?

Imaging during the final quarter then turned out to be something of a mixed bag trying to answer these questions.

I have a general feel about Gain, Offset and the related ADU values but if I’m honest despite reading around the subject I’m still mainly in the dark – no pun intended!  Such are the new challenges posed for all by the features of the ZWO1600MM-Cool it seems to me that even after 12 months the jury remains out over the answer to the first question – so it’s not just me!

The manufacturer provides value guidelines but based on experience, three schools of thought seem to have emerged from users:

  • Use Unity Gain 139 setting and vary exposure times – longer for nebulae, shorter for brighter objects such as M31;
  • Use low Gain for bright objects and higher Gain for faint objects + short and longer exposures, mindful of achieving a relevant ADU level across the resulting sub;
  • Use very high Gain and take lots and lots of short to moderate exposures.

I’m still experimenting with each of these techniques but increasingly lean towards higher Gain and varied exposure times of between 60” and 300”.  I have certainly found that lower Gain and short exposures didn’t work well for me when applied to the Andromeda Galaxy and California Nebula.

One issue when taking shorter exposures with the ZWO camera compared to a CCD is that many more subs are required, which inevitably needs very large storage and processing memory requirements – it’s a small price to pay for such quality and other advantages.  My laptop was already well specced for processing, with an Intel i7 64 bit chip 16GB RAM and to store the extra data I purchased a 4Tb external hard disc at a very reasonable cost = problem solved.

Picture saved with settings embedded.Like most people M42 has long been one of my favourites but like M31 I’m still struggling achieve a decent broadband image with the new camera and M45 is a similar problem; there’s nothing wrong with the camera, I just haven’t mastered the technique required yet.  However  narrowband images of M42, the Horsehead and Monkey Head nebulae all worked well at my standard default used of Gain 300 and Offset 10.

In preparation for further experimentation, at the beginning of  November I took time to compile a more comprehensive calibration library at various Gain, Offset and exposure settings.  Like most CCD cameras the new ZWO camera incorporates cooling to -45oC below ambient in order to reduce noise that is associated with all photoelectric sensors; I have been using the camera at a nominal temperature of -20oC.  By having such control it is therefore possible to obtain the aforementioned calibration frames irrespective of the ambient temperature and at any time.  Since June I’d already been successfully using another calibration set which has saved considerable time during each imaging session, unlike DSLR imaging which generally has to be undertaken at the same time + every time to ensure the same conditions.

Passing Shot: I’m posting Reflections later than usual this year having just returned from a protracted trip to New Zealand over the Christmas and New Year period.  The night sky down under was spectacular and I managed some good widefield imaging using a basic DSLR and tripod set-up; more on astronomy in New Zealand at a later date – Watch This Space Man! In the meantime below is a taster of the results taken whilst staying at my daughter and son-in-law’s house in Ohaupo, North Island.  Other than the beautiful Milky Way itself, note the Southern Cross just above the roof line and especially the large and Small Magellanic Clouds.

IMG_9984 (Large)

No Date Type Object Name / Type
34 12/10/17 B M31 Andromeda Galaxy
35 13/10/17 N NGC 1499 California Nebula
36 28/10/17 B NGC 2174 Monkey Head Nebula
37 28/10/17 B IC 434 Horsehead Nebula
38 30/10/17 B M45 Pleiades
39 30/10/17 B M42 Orion Nebula
40 01/11/17 N NGC 1499 California Nebula
41 13/11/17 DSLR Jupiter-Venus Conjunction
42 25/11/17 B NGC 1333 Reflection Nebula / Perseus
43 26/11/17 N NGC 2264 Cone Nebula

  ETCETERA

Once again my astronomy year was often shaped by other events and related matters.  Throughout the first quarter I completed an online MOOC course at Edinburgh University on the Higgs Boson and Particle Physics hosted by a wide variety of relevant experts, including no less than Peter Higgs himself.  It’s relevance to astronomy only came right at the end but was well worth waiting for.  Based on the theories of particle physics, the Higgs Boson, scalar fields and inflation, cosmologist Professor John Peacock ably demonstrated:

  • There was no Big Bang;
  • The existence of a multiverse – of which our Universe is but a part.

Intuitively I’ve long wondered about such possibilities and Professor Peacock’s lectures were by far the most convincing case I have seen for such a model.  Of course the implications of these conclusions are  profound and I’ve continued to think about this for the rest of the year.

As previously reviewed, for two weeks in February it was my good fortune to sail along the Norwegian coastline on the Richard With, flagship of the Hurtigruten ferry line.  At this time of the year it was very, very cold being mostly north of the Arctic Circle and the weather can be rough at times but overall the journey was outstanding.  Like most, my personal goal was to see and image the Aurora Borealis, which I was successful in doing on a number of evenings.  However, it’s got to be said that such imaging from a moving ship at -20C is both difficult and very uncomfortable.  Whilst I was pleased with the photographs, next time I’d prefer to be on land, where it should be so much easier.

Inspired both by the aforementioned trip and meeting a fellow geologist on board the Richard With who worked as a guest speaker on other cruises, I subsequently attended an audition to lecture myself on astrophotography.  Whilst my talk was successful and I was chosen to join the agency’s list of speakers, I have yet to be asked to join a cruise.

Favourite Images

With only a few exceptions, the outcome of my astrophotography in 2017 reflects the transition that took place from DSLR to the ZWO1600MM-Cool mono CMOS sensor camera.  The new camera has in every sense been a game changer and the resulting images have shown just how much colour and detail can be achieved in both broadband and especially narrowband.  Some of my personal favourites taken during the year are shown below, in no particular order:

Aurora Borealis-2 Northern Norway February 2017

LRGB1 GXCrop

NGC 2244 SHO Final1

Picture saved with settings embedded.

SHO Final

Eastern Veil Nebula detail in Bicolour 19th August 2017

Western Veil Nebula (Witch's Broom & Pickerings Triangle) in Ha-OIII Bicolour July 2017.jpg

MiIky Way Isle of Purbeck Dorset September 2017

M31 FINAL

CalCrop FINAL

SHO2 FINAL

Cygnus Wall BiCol FINAL

Above Images (from top-to-bottom): Aurora Borealis off Norwegian Coast – DSLR; Leo Triplet – LRGB; Rosette Nebula – SHO; Flame & Horsehead Nebulae – Ha; Eastern Veil Nebula – SHO; Eastern Veil Detail – Bi-Colour; Western Veil Nebula & Pickering Triangle – Bi-Colour; Milky Way from Isle of Purbeck, Dorset – DSLR; Andromeda Galaxy – LRGB; California Nebula – form left-to-right, Ha-SHO-Bi-Colour; North America Nebula – SHO; Cygnus Wall – Bi-Colour 

Round-up & goals for 2017

Since resolving a number of critical issues in 2016 and finally getting to grips with autoguiding, I’m pleased to say the basic processes worked very well in 2017.  In addition to improvements in the set-up, being able to operate from indoors has greatly improved both working conditions and the results.  Not surprisingly my astrophotography last year was dominated by learning and using the new camera.  Whilst the experience of DSLR imaging and related matters was helpful, I was surprised at just how different working with a mono camera, filters and especially processing has been by comparison and I’m still learning.  Some of the minutiae can be very important and are frustratingly easy to miss but, with the assistance of those ever helpful astronomers online and perseverance the results are really starting to show in my work.

RECORD CARD – 2017

 

Goal Specifics / Results Outcome
Improve processing After some set-backs now successfully processing FITS files in DSS and compiling broadband and narrowband images in Photoshop – all very different to DSLR RAW! Noticeable improvements using more complex techniques in PS.

  MUCH BETTER

 

Expand & Improve Widefield Imaging For the first time I obtained some decent images of the Milky Way but otherwise barely used the Vixen Polarie and did not make it to any other dark sky sites – disappointing.   FAILED

 

Start LRGB  imaging Now using the ZWO1600MM-Cool mono camera + EFW with LRGB & Ha- OIII- SII filters with good narrowband and varied broadband results.   GETTING           THERE

 

I think it helps to set some goals for the forthcoming year, so here goes:

  • Improve processing – more: Despite some noticeable improvements in 2017 there’s always more to learn whichever software is being used. I aspire to working with PixInsight or the newly acclaimed APP but will likely persevere with various more advanced Photoshop techniques.
  • Expand widefield imaging: First – use the Vixen Polarie as had been intended last year to obtain nightscape images at UK dark-site locations. Second – look at ways of using a widefield set-up with the mount.  Having previously failed I’m hoping to be more successful in 2018.
  • Improve broadband and narrowband imaging: In considering how to progress in 2016, I came to the conclusion that the next step should be a move to a mono camera rather than a larger telescope. This has turned out to be a great decision but it’s still early days.  There’s plenty more to learn and finesse but most of all after nearly a year’s learning and experimentation it’s clear that I need to improve one matter above all – increased integration time and this means learning plate solving.  I’ve been very happy using Astro Photography Tool (APT) for FITS image capture, scheduling and filter control (the APT Forum has been very helpful), but I also own the much praised Sequence Generator Pro (SGP) and might switch or at least give it a try in 2018.

I’m very pleased to say 2017 was a very good year for astrophotography, perhaps my best yet, which was especially defined by two positive developments:

  • In general the equipment set-up was much better after some long overdue changes and in particular operating from indoors, once all the basics are completed. With a good basic starting set-up and alignment of the guidescope-autoguiding camera with the main OTA, I’m often able to just quickly refresh EQASCOM alignment models directly from the computer = no more crawling around on the ground in the dark, or at least very little!
  • Although it’s still early days and despite my reservations over the complexity (which is true) of using a mono camera and filters, it’s revolutionised and revitalised my imaging and therefore proved very worthwhile. It is a lot of fun and the improvement of my images has been both exciting and very fulfilling.

You can’t ask for more than that and holds much promise for the coming year, which I hope to record in WTSM’s Reflections at the end of 2018.

Watch this space!

POSTSCRIPT

The ones that got away:  Imaged but not seen in WTSM this year (warts and all)

NGC 2174 281017

Pleiades 301017

Picture saved with settings embedded.

M15 Crop 200817

Above Images (from top-to-bottom): M42 Bi-Colour, Ha & SHO; Monkey Head Nebula Bi-Colour; Crescent Nebula SHO & Bi-Colour; Pleiades LRGB; Sadr Region Ha; M15 Globular Cluster LRGB    

AstroBites-3: Conjunction

IMG_8848 (Large)

I was up early this morning in order to view and image the rare visual conjunction of Jupiter and Venus.  Unfortunately I cannot see the eastern horizon from here but from the top of Redhill Common adjacent to Fairvale Observatory there is an excellent view and just before 6.30 a.m. I climbed to experience the spectacle.

Following a cold, clear night the early morning weather was excellent and I was able to obtain a number of images as well as a good view using binoculars.  It was a short but worthwhile event, as shortly after 6.50 a.m., with growing brightness from the impending sunrise due at 7.14 a.m., the view of the conjunction was soon lost.  The next Jupiter–Venus conjunction will be on 30th April 2022, so time to recover!

IMG_8853 (Large)

AstroBites-2: Home Sweet Home

IMG_8748 FINAL (Large)

From time-to-time I’ve been fortunate to see the Milky Way but due to the lack of dark skies, rarely in the UK.  With a move towards urbanisation taking place throughout the world, light pollution is a major obstacle to such views and astronomy in general and it is only in more remote, unpopulated locations that such sights are now possible.  On such occasions a view of our galaxy from within is always striking and usually memorable. I’ve been fortunate to visit many such remote places but either didn’t look upwards (why not?) or was hindered by the inevitable cloud.  Recently on a trip in 2016 to Arizona and Utah in the South West USA, such views were hampered by the full moon – timing is everything!  However, there have been two occasions when the darkness was so complete that I found the view of the Milky Way to be not only incredible but quiet profound – first in the Kalahari desert in Botswana and subsequently on a scuba diving trip whilst motoring southwards along the middle of the Red Sea at night with the boat’s lights turned off.

Notwithstanding, since my interest in astronomy started a few years ago I have yet to successfully image the Milky Way, which has remained resolutely elusive to my camera sensor.  I have tried a few times at Fairvale Observatory but the night sky here at best rates 5 on the Bortle scale and makes such imaging almost impossible.  Then whilst in the Arizona desert last year (see above) and on other occasions I have been thwarted by a full moon.  Apart from the obvious problem of light pollution I was beginning to wonder if I was doing something wrong but no, it was the sky conditions.

Finally during September this year, whilst camping in Dorset on the Isle of Purbeck just west of Corfe Castle, I at last managed to image the all elusive galaxy – our galaxy (see top of page).  Looking south across the Purbeck hills towards the English Channel, the Milky Way was revealed in all its glory traversing the clear, very dark sky which itself was pierced by the vivid light of the myriad of stars; it is on such occasions I realise just what I’m missing at home.  Once accustomed to the darkness the form and some detail of the Milky Way could be clearly discerned with the naked eye but of course the camera saw a lot more.

Picture saved with settings embedded.

Some processing shows good detail of the Milky Way but at ISO 6400 is too noisy

Using my unmodded Canon 700D DSLR and an ultra wide-angle 10mm lens, for the first time I was able to capture some reasonable images of the Milky Way.  All were shot on a static tripod between 15 and 20 second exposures at ISO 6,400; I had set-up the camera on the Vixen Polarie for tracking but could not obtain a favourable view of the galaxy in this way.  From this experience next time I would reduce the ISO to at least 3,200 or less and increase the exposure time based on the ‘Rule of 500’ to about 30 seconds.  However, for now I’m happy with the result and hope the next opportunity doesn’t take another  lifetime coming.

Planetary Playtime

SKY Live

Starting out three years ago I inevitably began my astrophotography with the Solar System, the planets and other related bodies are after all closest to Earth but, as it turns out, are far from easy to image.  At the time using a Skywatcher 150PLS and ZWO120MC webcam, I achieved some reasonable images of Saturn, Jupiter, Mars, the Moon and later the Sun but with plenty of upside potential for improvement! Shortly thereafter having acquired my current set-up, I realised that my interest lay in DSO targets and, except for the lunar eclipse in 2015 and the odd white-light image of the Sun, have mostly ignored the Solar System, until now.  Currently no less than 7 planets are present throughout the night at the moment, the largest of which provide good viewing and imaging opportunities – planetary sky above for 11th June 2017 at 11 p.m. taken from TheSkyLive.com

From April to July there are limited DSO opportunities for my scope and camera and the only choice is to look elsewhere; the absence of astronomical darkness also doesn’t help.  This year the problem has been particularly frustrating as I’m itching to get to grips with my new ZWO 1600MM-Cool camera, which after a few hurried shots early in the year proved very exciting.  And so I’ve recently been playing around, returning to old subjects and unfamiliar equipment – first imaging the comet C/2015 V2 (Johnson) and again trying my hand again at some of the planets.

Unlike the DSLR and ZWO 1600MM-Cool CMOS camera, I the ZWO 120MC video based webcam is more suitable for the planets, which poses a whole new set of issues and the use of completely different capture and process software, in my case Firecapture for imaging and Registax for processing. Both are excellent free programmes but after three years required some re-learning.

Firecapture helps a lot when experimenting to find the best gain, gamma and exposure settings for each planet but there are still other difficult tasks to overcome, in particular planetary rotation, size, seeing conditions and my personal nemesis – focus – which after numerous attempts I have still failed to master. The truth is that even with the gas giant Jupiter, the planet appears quite small with the 81mm aperture of my Williams Optics refractor and detail is difficult to make out in order to focus when also blurred by atmospheric turbulence.  Notwithstanding, the belts and even the Great Red Spot are evident in the resulting images taken between 14th and 25th June, albeit a little fuzzy!

Webcam image data capture even over a couple of minutes is prodigious and requires significant processing capacity to handle.  I have found the aptly named Castrator software useful in this regard to cut the final AVI image down to the actual size of the planetary object, thus removing substantial areas of superfluous black sky.  Registax is equally powerful for video processing and stacking, in particular the intriguingly named Wavelets, which magically help restore detail and sharpness.

Saturn

In the case of Saturn, which at the moment is quite bright and well orientated, the problem is also size and especially seeing, in my case not helped by a 35 minute imaging window as the planet transits between two trees at the end of my garden; at least the large copper beech on the left blocked out the Moon at the same time! At this location Saturn is less than 15o above the southerly horizon and as a result seeing conditions are at best poor and usually bad.  However, I manged some blurred images that clearly show Saturn’s rings and even a little colour.  I’m now looking forwards to seeing more of the final Cassini mission images before the satellite crashes into the plant in September.

These are obviously not my best images and I already feel the need try again next year, hopefully with a more appropriate telescope (Santa has already been informed). Notwithstanding, my return to the Solar System has been fun and, in between imaging I’ve also taken time to carry out observational astronomy – something I rarely do nowadays being otherwise consumed by astroimaging paraphernalia.  DSO astrophotography is likely to remain my main interest in the future and I can’t wait to revisit old favourites later in the year with the new ZWO 1600MM-Cool camera.  In the meantime, I have renewed respect for the planetary astrophotographer’s, I’ll be back another time.

 

Playing poker with the heavens

cards1

It’s that time of the year when Earth ploughs its way through the tail of comet Swift-Tuttle, resulting in a the Perseids meteor shower. The name is derived from the location of the radiant point within the constellation of Perseus and Greek mythology’s reference to the sons of Perseus.  Such are the orbital paths that Earth’s encounter with the comet occurs around 11th to 13th of August each year and can provide an enjoyable spectacle as the meteor particles rain down through atmosphere.

perseids-e1312951836623

Travelling at some 37 miles-a-second, the sand-grain size particles literally burn up in the blink of an eye, with the energy created producing a bright path of the light path that very briefly shoots across the night sky, sometimes green or red coloured.  Some 16-miles in size, from time-to-time the comet itself actually passes nearby to Earth during its orbit around the Sun, last time being in 1992 and the next in 2126.

Perseid ZHR 2016

Whilst the timing of our annual encounter can be predicted with good accuracy, a sight of each individual meteoroid particle is entirely down to chance.  Over a period of two or three days the frequency (Zenithal Hourly Rate or ZHR) may vary from a few tens to a few hundred, depending on which section of the comet’s tail Earth is passing through. Of course, observation requires a clear sky – something that’s been notably absent here at Fairvale Observatory for some time now.  Notwithstanding, this year there were three consecutive clear, dark, warm nights, which occurred shortly after a new Moon that provided excellent Perseid observing opportunities.

Viewing is a matter of lying back in a suitable garden chair looking up towards the radiant position, which starts in the north east then moves to the south during the night and just waiting.  This year peak Perseids were on the evening of 11th/12th August between about 11pm and 1am, during which time we probably saw between 20 to 40 hits an hour; the previous and subsequent evenings were also quite good, though with slightly less hits.  Such is the randomness of each meteoroid hit that in practice Perseid trails occurred all over the sky and were easy to miss if outside the peripheral vision.  However, overall it was a very good and enjoyable show but probably  not as good as that from the ISS.

IMG_7024 (Medium)

At first this looks great but look again, it’s an aircraft trace – living next to Gatwick airport doesn’t help. The giveaway is in the next shot which shows the track continuing i.e. too long and too far for a meteoroid.

At the same time using the Canon DSLR and an ultra-wide lens, I also attempted to image the Perseid shower.  On the first night using Vixen Polarie tracking, set towards the radiant position and on the second night pointing east, without tracking.  Control was via an intervalometer, with camera settings at ISO 800, 20 or 14 second exposures, and 5-second shot intervals.  Even with such a high incidence of meteoroid hits, obtaining a photograph was still very difficult; mostly the strikes occurred outside the field-of-vision or sometimes in the 5-second pause.  In total I shot over 300 images but obtained just two Perseid hits and more than a few plane tracks!  Even with good preparation and clear skies it really is a case of chance but I was nonetheless pleased to have my share of luck this time and look forwards to another opportunity this time next year, weather permitting.

IMG_7111 (Medium)

Gotcha – the real thing: ISO 800 @ 20 seconds with tracking.

 

IMG_7303 (Medium) (2)

Only just! This time the Perseid is just sneaking out of view at the bottom of the frame: ISO 800 @ 14 seconds, without tracking.

Transit

13147537_10154089139076772_6724120884346003381_o

Unfortunately not my image: Mercury starting its transit across the Sun today, photo by NASA.

The transit of Mercury across the face of the Sun takes place about thirteen times each century and today was one of those occasions; the next is on 11th November 2019.  With months of bad weather I’ve been unable to undertake very little astronomy for some time but albeit late, spring actually arrived last week and I took the opportunity to shake-down my equipment and experiment with settings for solar imaging in the hope of capturing Mercury’s transit.  Using a Baader solar filter and both the William Optics GT 81 and Skywatcher 150PL, I have successfully imaged the Sun before.   Of course, inevitably I aspire to a dedicated Lunt or Coronado solar telescope one day in order to image details of the chromosphere and prominences, which are not visible using a white-light solar filter.

Sun spot activity is limited at the moment but the Baader filter and WO GT81 do a reasonable job, although I find achieving focus of the Sun quite difficult.  Using the DSLR I experimented with the field flattener and an alternative basic 1/ 1.25” nosepiece, which produced a preferable result of a slightly larger and sharper image.  I also tried the ZWO ASI 120MC webcam but as I don’t use this very often struggled to get the settings right for any sort of image – I’ll experiment more with that over the summer. I also put EQMOD-ASCOM and the newly acquired gamepad control through their paces which both worked well, so I was ready for the transit – weather permitting.

IMG_0016crop

Last week’s test image of the Sun, with sun spot top left: WO GT81 + 1.25″ nosepiece | 1 / 2,500 sec @ ISO 100

After days of sunshine, albeit with high cloud that has continued to prohibit astrophotography at night, I was nonetheless hopeful of seeing at least some of the transit today.  Notwithstanding, Sods law arrived in the form of a belt of cloud over south east England last night!  Not to be defeated I watched the sky and cloud forecasts which suggested a glimpse of the transit might still be possible.

In hopeful anticipation I set up the equipment just before contact at 12.12 pm BST and shortly afterwards obtained a good view of Mercury as it started its transit across the face of the Sun. For the next three hours I managed glimpses of the planet as it continued its journey.  It is very, very small but forms a distinct, sharp black dot against the background of the Sun when compared to the more diffuse, grey nature of the sunspots.  It was an exciting experience and despite the drawbacks – cloud has now completely covered the sky for the rest of the transit – it was very enjoyable; so what’s the problem?

Despite all my preparation for imaging everything that could go wrong did and I was unable to obtain even a single photograph:

  • On setting up the camera and starting to focus the EQMOD-ASCOM tracking stopped and Carte du Ciel froze. Despite re-starting the set-up numerous times the tracking would not work!
  • Finally after resorting to the Synscan handset for tracking control, for some completely inexplicable reason I could not get any sort of image on the camera, that otherwise was working OK!

As I have learned many times before, the art of astronomy is patience and persistence but I am very disappointed not to have imaged Mercury during its transit today.  Ironically once the cloud put an end to further activity, I tested the EQMOD-ASCOM tracking once again and it worked fine.  Perplexed does not describe my feelings – oh well, 3-years to prepare for the next transit!

hair-tearing

How I felt after today’s imaging!!! The transit view was still very good and I’m grateful for the breaks in the cloud.