Fairvale Observatory Part-3, Progress: modded DSLR, computer control, autoguiding etc.

It’s been a while since I last took a look at developments here at Fairvale Observatory (Part-1 & Part-2) and looking back it’s pleasing to see that progress has continued with positive results.  After acquiring the William Optics GT81 refractor and AZ-EQ6 mount in 2014 I have been experimenting and enjoying the equipment’s significant abilities until recently but have now embarked on some new, potentially important improvements that hopefully will result in significant breakthroughs.

At the start perhaps the biggest problem for imaging was polar alignment, made very difficult here as my house almost completely obscures Polaris.  It took some time but I’ve now overcome this by using the Synscan handset polar alignment technique, which now enables me to achieve an accuracy of just a few arc-seconds and has led to a significant increase in imaging times of at least 180 seconds.

With the short focal length of the fast William Optics this level of alignment error works well and I’ve been pleased to obtain decent images of larger DSO features such as the Great Orion, Rosette and Veil nebulae i.e. near / middle distance objects, ideally at least 1o in size with an apparent magnitude of +7 or better.  Once I’ve exhausted all these targets, and I have fortunately been discovering more and more, it’ll be time for another telescope!

The small things matter too and in this regard I’ve added a number of useful items:

  • Made a solar filter and finder tube for the WO GT81;
  • At last, I recently collected the cables together into two looms;
  • Purchased a 12mm reticle to aid alignment;
  • Astronomik CLS light pollution clip filter;
  • Photoshop – an old version but I’ve been successfully using it for processing.
IMG_2292

The set-up has become a lot tidier and logistics made easier by collecting the power and camera cables into two separate looms (camera loom not shown) and permanently attaching the HiTec Astro control cable to the mount – why didn’t I do this before?

More significant additions that I’ve already reviewed include a modded Canon 550D DSLR, which together with improved tracking has revolutionised imaging and a recently a Vixen Polarie, that has transformed widefield photography and added a new dimension – transportability.  It’s early days and I have not really got to grips with the Vixen Polarie yet but initial use suggests it’s going to be a very useful addition and potential game changer.

At the end of last year in Reflections I outlined my goals for 2016 and I am pleased to say that I have at last just started to establish the equipment and software to start autoguiding, the holy grail of astroimaging that when fully working should enable me to achieve exposure times significantly greater than present – which is likely to be at least another couple of months.  For a while I have been successfully using EQMOD /ASCOM combined with Cartes du Ciel for tracking.  There were some initial connection problems but now using a HiTec Astro EQDIR adapter and a better quality USB cable seems to have improved this matter; I’ve also recently secured it to the tripod making the set-up more stable and aiding logistics.  I still polar align with Synscan before switching to EQMOD-Cartes du Ciel for additional star alignment, slewing and tracking.

Using EQMOD-Cartes du Ciel makes slewing to any chosen object much easier than Synscan but its use has introduced another operating problem.  After slewing to a chosen object or star it is never exactly centred and some manual fine alignment is almost always necessary at this point.  The problem is that this requires being at the eyepiece, which of course is not located by the computer, which means frequent toing and froing between the two locations and a lot of guesswork when adjusting the mount from the computer.  In reality this is not very practical and I have therefore just purchased a gamepad that links wirelessly to the computer and allows mount adjustments to be made when at the eyepiece.  It’s not quite set up yet but nearly and I’m impressed; ASCOM even allows you to add WAV files that speak to you when making changes – sounds like a gimmick but when in the dark with lots of items to attend to it is actually very useful and will hopefully reduce the possibility of making mistakes.

IMG_20160401_144602833

Wireless gamepad provides extensive control of critical alignment functions without being at the computer: front x4 buttons are assinged to set various slew rates, the mount-telescope can be directed either via the rear (shown right) joystick or POV buttons on the right, button-1 parks and button-2 syncs. Other buttons have yet to be allocated.

It had been my intention to use the ZWO ASI 120MC webcam for guiding, in fact I upgraded to this at the time of purchasing in 2014 for this very purpose as it has a specific port for ST4 autoguiding directly with the mount.  However, very recently a Starlight Express Lodestar X2 guide camera came up second-hand and being widely acknowledged as one of the best guider cameras available I couldn’t resist!  Of course, despite its pedigree like most things with astroimaging it has not been that simple to get working.

sx2

Starlight Express Lodestar x2 Guide Camera can be used either via the mount’s ST4 port or via ASCOM and the computer for pulse guiding – I’m doing the latter.

Despite being a dedicated guide camera with high operating specifications, at first I could not obtain any sort of image to prove it was even working but by transferring the lens from the ZWO camera and fiddling with the software I eventually got an image, phew!  It’s important to say here that for guiding it is also necessary to use suitable guiding software and I‘m inevitably using PHD2, which itself is full of wonderful features and mischief that I am at the early stage of learning and trying out with the camera.

IMG_20160316_233736210

William Optics 50mm x 200mm with focus tube and Lodestar guide camera – after lengthy experimentation, insertion of a x2 Barlow barrel eventually achieved focus.

At this early stage the other inevitable obstacle has been achieving focus.  The William Optics GT81 telescope conveniently comes with its own guidescope rings that elegantly form an integral part of the OTA shoe attachment.  With guiding as a long term goal, I therefore obtained the matching 50mm William Optics guidescope at the time of purchasing the main telescope, which until now has been sitting in its box as I built up the courage to put it all together and attempt guiding.

IMG_20160331_225626313

The black art of autoguiding and infamous PHD2 screen; I have just for the first time got the camera and PHD2 working together: focussed, calibrated and guiding. The nature of the blue (RA) and red (DEC) traces indicates there’s still much to learn but at least it’s working and holds much promise for future imaging!

As a matching guidescope and a dedicated top-of-the-range guide camera I assumed it would all fit together and with a little adjustment focus could be obtained, right?  Wrong.  I played with the camera’s position but failed to get any idea where the point of focus was.  Next time I initially had the same result but by now knew that the camera was working so persevered and by using the barrel from a x2 Barlow with the lens removed eventually found focus, about 2cm back from the maximum position achieved using just the guidescope + focus tube and camera.  I know that there are many makes of equipment and permutations but surely a matched guidescope and standard, best-in-class guide camera should be designed to work together from the outset?

So what’s next? I am hoping that after a few more sessions with the guide scope and PHD2 I will able to start autoguiding properly.  However, two years of astronomy and an early look at PHD2 tells me it probably won’t be that easy.  Notwithstanding, two years of astronomy also tells me that perseverance is essential and usually pays off.  Watch this space!

It’s all in the stars

Starry_Night_Over_the_Rhone

After 24-weeks I have just completed Imagining Other Earths, a Coursera MOOC presented by David Spergel, Charles A. Young Professor of Astronomy at Princeton University – soon to become Director of the new Computational Centre of Astrophysics, NY – and cannot speak too highly of the course.  In my quest to better understand what I am seeing and imaging, I have participated in five astronomy courses and this is by a country mile the best; how many country miles in a parsec I wonder?  There was very little not covered about astronomy in the course, including related geology and life itself but it was outstanding for three reasons:

  • Frequent use of easy-to-understand equations to explain and link various processes responsible for the Universe and everything in it;
  • It is very comprehensive, thorough and well produced, and…
  • David’s lecturing is just very good – easy to understand and well delivered.

For some while now the trend in my astrophotography has been increasingly directed towards seeing the big picture and by coincidence the course followed a similar scientific theme in order to Imagine Other Earths throughout the Universe; a metaphor for life itself and possibilities across the Universe.

download

The ultimate question starts at the beginning – where do we come from?  Moby and astrophysicists seem to have the answer: we are all made of stars.  How we get from that to here may be an even bigger question and like the philosophers in The Hitchhikers Guide to the Galaxy looking for the meaning of life (answer = 42!), should keep many astrophysicists gainfully employed for aeons.

inflation

In the meantime there is strong evidence that we do indeed come from stars and their evolution through the process of nucleosynthesis, which is responsible for all but a few man-made elements that we find on Earth.  Through the action of nuclear fusion a star burns its way through the periodic table, first from hydrogen to helium then carbon-oxygen-magnesium-silicon and eventually iron.  Thereafter the other, heavier elements require even more extreme conditions – heat & pressure – that can only be found in the late or final stage of a star’s life such as a Super Nova.

hr_fancy

When the Periodic Table was initially formulated in 1863 by Dimitri Mendeleev there were 53 elements, which through subsequent discovery have now grown to 118.  I find it wonderful and exciting that almost all of these can be attributed to stellar evolution, which can be viewed and imaged in the night sky.

Nucleosynthesis_periodic_table.svg

At this time of the year the Milky Way is a dominant feature passing across the winter night sky which provides numerous, sometimes spectacular objects that are favourable for imaging.  Located close to the western edge of the Milky Way in the constellation of Auriga about 1,500 light-years from Earth, is IC 405 or Flaming Star Nebula and nearby (visually) IC 410 or Tadpole Nebula, itself at 12,000 light-years distance.   Located across the central area between these objects is a star field, notable of which and actually within the IC 405 is the O-type blue variable star of AE Aurigae, that is responsible for illuminating the nebulae.

auriga

IC 405 is formed of two sections, consisting of an emission and reflection nebula. Radiation from the variable star AE Aurigea, that is located in the lower part of upper-east (left) lobe, excites the hydrogen gas of the nebula which then glows red, while carbon-rich dust also creates a blue reflection from the same star.

Picture saved with settings embedded.

IC 405 (right)-The Flaming Star Nebula inc AE Aurigae varibale star & IC 405-The Tadpole Nebula: WO GT81 & modded Canon 550D + FF | 15 x 180 sec @ ISO 1,600 & full calibration | 8th December 2015

Located within the nebula IC 410 and partly responsible for its illumination is an open cluster of massive young stars, NGC 1893.  Being just 4-million years old these bright star clusters are the site of new star formation and therefore are just starting their creation of new elements.  The so named ‘tadpoles’ are filaments of cool gas and dust about 10 light-years long.

IC 410Canotate (Large)

IC 410-The Tadpole Nebula: Illuminated from within by the NGC 1839 star cluster.  Image cropped and forced to highlight the two ‘tadpoles’, which can just be seen indicated in the green ellipses (‘tails’ upwards)

Each nebula is large, respectively 30’ x 20’ and 40’ x 30’, with an apparent magnitude of +6.0, which combined with the star AE Aurigae makes an excellent target for the William Optics GT81.  I find it thrilling to consider the processes taking place in these objects that I have captured in the photograph, which surely represents the ultimate Big Picture?

Good Vibrations

Ever since autumn undertaking astronomy has continued to be very difficult at Fairvale Observatory; except for some periods coincident with the full Moon, I can count on the fingers of one hand the times we’ve had clear dark skies – at this rate I’m going to need a new hobby!  As a result 8th December was the last time the observatory was in action – frustrating but what can I do?  Notwithstanding, on that occasion I was able to obtain decent images of three different objects, two of which were new for me.

2015_15_Sunshine_Anomaly_1981-20101

I live under the grey bit in the South East i.e. cloudy

Apart from persistent cloud, the winter has also been unusually wet and in general I yearn for better weather. In the absence of more desirable conditions I was at least able to image something that kind of reminds us of a better more pleasant climate, NGC 1499 or The California Nebula – so called because being like the shape state of California.

perseus

Located in the constellation of Perseus, within the Orion arm of the Milky Way some 1,500 light-years from Earth, NGC 1499 is a large emission nebula about 100 light-years long, or nearly 4o.  The HII nebula is ionized by the nearby but otherwise unrelated star of Xi Persei (Menkib) but despite its size it is difficult to view and can only be properly appreciated using long exposure imaging, preferably with an Hβ filter (486 Nm) or in my case a modded-DSLR camera and light pollution filter (450 Nm – 550 Nm & 650 – 750 Nm) worked quite well.

Picture saved with settings embedded.

NGC 1499 California Nebula – Xi Persei (Menkib @ top), North down: Wo GT81 & modded Canon 550D + FF | 16 x 180 secs @ ISO 1,600 & full calibration | 8th December 2016

It was a pleasure to finally image the California Nebula, which is an ideal object for the William Optics GT81.  However, being nearly 2-months since imaging NGC 1499 it is now only present during the early evening and will soon be gone from the sky altogether for another year, pointing the way towards the Spring Equinox in a few weeks and hopefully improved weather and astronomy conditions, in every sense leading to good vibrations!

A Wider Perspective

I like to think and operate at both ends of the spectrum: sometimes considering detail and its implications and often exquisite beauty, whilst on the other hand taking a wider view will often provide broader insight and answers – notwithstanding, I am usually drawn towards the latter.  There was no shortage of scope for such thoughts in my career as a geologist and now as my hobby in astronomy.  I have become fascinated with parts of the Universe and captivated by imaging them: galaxies, nebulae, star cluster etc. but the wider view is often even more astounding and perplexing.

you-are-here-2

My nascent astroimaging has already produced some rewarding photographs, which using the fast William Optics GT81 refractor has enabled me to obtain images of up to 3o FOV. In fact this became something of a theme last year, successfully imaging features such as the Sadr Region and as they say, one thing has led to another.  Wanting to image even wider views there’s mostly only one alternative, using a camera and lens.  I’ve tried this before, on a tripod and fixed to the ALT-AZ EQ6 mount but with mixed success.  Meanwhile, I came across excellent pictures taken using lightweight tracking mounts on a tripod and as a result the way forwards became obvious; after scanning the Classified advertisements online for a while I was fortunate to find and purchase a second-hand Vixen Polarie mount last September.

Probably my favourite object, which can rightly be considered the signature image of the winter night sky and is therefore around at the moment, is the constellation of Orion and especially its numerous and often exciting constituent parts: M42, Horsehead & Flame Nebulae etc.  After waiting for weeks for the clouds to clear, I briefly got a chance to image Orion using the Vixen Polarie early in November, whilst at the same time using the WO GT81 to obtain yet another picture of the irresistible Great Orion Nebula M42. 

Picture saved with settings embedded.

Orion’s Sword – including the wonderful Great Orion Nebula M42 et al : WO GT81 + modded Canon 550D & FF | 14 x 180 secs @ ISO 1,600 | 9th November 2015

The Vixen Polarie is a deceivingly simple and well-made solution to obtaining long exposure images of the wider night sky using a camera and lens.  As stability remains essential for the mount and camera to operate at their best, I also purchased a decent Manfrotto tripod and suitable ball heads to attach the Polarie.  After that it was simple, well not quite! Trying out the Polarie at the same time as using the GT81 and being first time out was a mistake.  I fumbled setting up the equipment and initially even forgot to turn on the tracking, leaving only a short time to grab a few images before the clouds rolled in once again!  Not surprisingly the results were mixed and I was left frustrated.  With continuing poor seeing conditions, it was to be a further month before I had an opportunity to properly use the Vixen Polarie again – this time with a new Sigma 10 – 20 mm ultra-wide angle lens I had just purchased.

Picture saved with settings embedded.

Vixen Polarie & Canon 700D + 18 – 55mm lens | 19 x 60 secs @ ISO 800 | 9th November 2015

Having by now spent more time looking at the manual (we all get there, in the end) and concentrating on imaging using only the Polarie, this time I was able to achieve a good set-up and remembered the correct sequence of operation.  As the mount sits high on the tripod I am just about able to see Polaris in a small gap between the roof of my garage and house, something hitherto impossible when using the lower positioned AZ-EQ6 mount.  As a result I am able to achieve a reasonably good visual polar alignment, though a polar scope made specifically for the Vixen Polarie would improve this further; probably something for another time?  Nevertheless, such an alignment at Fairvale Observatory is a first and was a major breakthrough that has already permitted exposures of 4 minutes and could probably go to 5 to 6 minutes or more.

IMG_2135 (Large)

The high position of the Vixen Polarie on the tripod provides an otherwise elusive view of Polaris between the garage / utility room and the main house for polar alignment, at last! Alignment of the mount is carried out by viewing through the hole in the top right of the Polarie – better alignment can be achieved by using a polar scope which fits through the middle of the Polarie mount.

Once polar aligned, fixed on the front of the Vixen Polarie the camera then rotates to follow the celestial sphere and chosen object in order to achieve a sharp image with long exposures.  For this purpose there are 4 tracking rates: sidereal, half sidereal, lunar and solar.  With no interesting foreground here I concentrated on the sky by using the sidereal rate; for more scenic shots with the landscape incorporated, using half-sidereal provides a compromise in order to achieve a non-blurred image of the sky and landscape, though this method is inevitably limited to shorter exposures than sidereal.

IMG_2124 (Large)

Vixen Polarie mount on Manfrotto tripod – a lightweight, portable tracking method for widefield astroimaging

IMG_2125 (Large)

Vixen Polarie – close-up showing x2 ball head fittings

IMG_2131 (Large)

Vixen Polarie – tracking speed settings

VP Dial

IMG_2136 (Large)

Vixen Polarie with DSLR attached & ultra-wide lens

I have adapted a somewhat basic red dot finder to fit on top of the DSLR camera using the hot shoe, which was immediately helpful to accurately locate the desired target area.  However, as previously experienced, once again achieving focus proved quite difficult, basically requiring just trial and error; I intend to look into a more efficient method but in the absence of a Bahtinov mask this is likely to be the best technique for now.  A laptop can be used for image capture but maintaining the themes of portability and simplicity, I successfully used an intervalometer to control exposures.

Whilst initially my target was the Orion constellation, I’ve long held the ambition to image Barnard’s Loop, a much larger and elusive feature surrounding the constellation and more difficult to photograph.  I had tried this before last January with limited success but ever since acquiring the Vixen Polarie this has been my No1 imaging goal.

Orion Constellation 220115 Stacked1L2C3GX (Large)

The Orion Constellation & Barnard’s Loop (up / north is left) : AZ-EQ6 Mount + Canon 550D & 200mm Telephoto | 180 secs @ ISO 1,600 & calibration | 22nd January 2015

Unable to see with the naked eye, only using long exposure photography unveils the majesty of Barnard’s Loop, an emission nebula to the left (east) of the Orion constellation. Shaped as a large-C, the loop completely encompasses the eastern side of the constellation and is thought to be a recent supernova front moving out from Orion and illuminated by stars from within the nebula, as well as part of the Orion Molecular Cloud Complex.  Discovered and named after astrophotographer E. E. Barnard in 1895, at some 14o or 300 million light-years across Barnard’s Loop is enormous; however, the entire Molecular Cloud is about 30o in size!

pleyades31_02

The Orion constellation was originally conceived in Greek mythology as the Hunter, pursuing Taurus the Bull to the west, with the stars tracing out a shape of a hunter holding a shield and club in each hand, a belt around the waste with a sword attached.  What they could not have known at the time is that he also has a head, in the form of the Lamda Orionis Nebula (Sh2-264), located centrally and above Betelgeuse and Bellatrix.

Picture saved with settings embedded.

Barnard’s Loop & Lamda Orionis Nebula : Vixen Polarie & modded Canon 550D + Sigma UWA @ 20mm | 11 x 240 secs @ ISO 1,600 + darks | 7th January 2016

I was able to image Barnard’s Loop on 7th and 14th January; at ISO 1,600 the first images showed the Loop but certainly left room for improvement, as a result I shot the subsequent images at ISO 800 and obtained a noticeably better outcome – though I had to push post processing to reveal the features.  The Loop and head are clearly evident but I’ve been intrigued to see other objects also revealed, albeit without the detail obtained with prime focus imaging using the telescope: Great Orion Nebula, Horses Head & Flame Nebulae and surprisingly on the left (east) of the Loop the Rosette Nebula.  Looking at other’s images of Barnard’s Loop it is clear that I will need to take significantly more subs to properly reveal the full beauty of this wonderful and very large feature – dark skies would be nice too – but for the moment I am pleased with my first outing using the Vixen Polarie, which holds great promise for capturing a wider perspective of the Universe.

Picture saved with settings embedded.

Barnard’s Loop & Lamda Orionis Nebula + Rosette Nebula on far left : Vixen Polarie & modded Canon 550D + Sigma UWA lens @ 20mm | 14 x 240 secs @ ISO 800 | 14th January 2016

Reflections – 2015

Launched in August 2014, 2015 is the first full year of Watch This Space (Man) and despite some personal set-backs it’s been an interesting year astronomically, with much to write about.  Whilst I have made progress with my imaging, it was not what I would have wished for but nonetheless I have been pleased with the outcome.  Continuing on from last year, Reflections is a recap and thoughts on all that happened to me astronomically in 2015 and looks forward to the coming year.

Although this website is just intended as my record of A personal discovery of the Universe through astronomy and astrophotography, it has been pleasing to see that over the year the site has attracted 1,310 visitors from 77 countries around the world and over 2,700 views; you are all most welcome.  This was not the intention of the blog but I am humbled by the interest and would be very pleased to hear from anyone who would like to get in touch with queries, comments or just to say hello – contact details are in the About section.

Reflections 2015

JANUARY TO MARCH

The first quarter turned out to be my most active and successful period of the year for reasons that will become apparent later.  Strictly speaking my image of the Rosette Nebula posted on 5th January was taken on 29th December 2014 but what an image to start the year with, clearly I was doing something right by now.  Notwithstanding, from looking at pictures of the same object taken by other more accomplished photographers, it was evident that something was missing – red!  This was an easy to problem to solve and I immediately set out on a quest to find a suitably modified camera with the IR filter removed.  Soon thereafter I was lucky to find an excellent second hand modded Canon EOS 550D, which has now become my main imaging camera of choice and with all that extra red Ha-light has led to a quantum improvement of many images since.  Such cameras are very popular so I felt lucky to have secured this one.

Orion's Sword: M42 The Great Orion Nebula, Running Man Nebula & NGC 1981 Star Cluster WO GT81 + modded Canon 550D & FF | 10 x 180 secs @ ISO 800 & darks calibration | 8th February 2015

Orion’s Sword: M42 The Great Orion Nebula, Running Man Nebula & NGC 1981 Star Cluster
WO GT81 + modded Canon 550D & FF | 10 x 180 secs @ ISO 800 & darks calibration | 8th February 2015.  Modification of the camera by removing the IR filter increased red Ha-light.

EQMOD / ASCOM is a popular free software project developed by amateurs that, amongst other things, provides computer and planetarium linked control of the mount; with other compatible linked programmes such as APT (Astrophotography Tool) and PHD (Push Here Dummy) control can be extended to cameras and for autoguiding.  At the start of the year I successfully started using Carte du Ciel planetarium linked with EQMOD for computer controlled alignment and mount control, which as expected was very useful – particularly when it got really cold and I was able to take the equipment indoors and operate the equipment remotely.  However, later in the year I have encountered connection problems which are, as yet, not fully resolved.

Whilst EQMOD is an excellent project which provides first class mount control when working, it requires additional faffing about and problems on a different level of scale, which with limited imaging conditions in the UK and having to set up outside from scratch each time is a pain.  For this reason and others I have not yet moved to autoguiding, which I know will be highly beneficial to imaging but for the moment has proved to be a step too far for me.  Such is the fickle nature of all this that I’m now considering other ways of achieving the same end, perhaps with professional software control and a stand-alone guider, such as the Lacerta M-GEN – of course a dedicated observatory would help a lot but seems unlikely at the moment!

I have previously found the early winter sky of Orion, Taurus, Pegasus and Monoceros very productive with beautiful imaging objects such as M42 and the Horsehead Nebula.  However, this year looking more closely at the late-winter / early spring skies turned out to be just as exciting, with a veritable playground of galaxies to choose from during February and March.  Notwithstanding, the highlight during the winter was successfully imaging Comet Lovejoy, a first for me that required changes to  normal DSO and planetary imaging techniques as this ephemeral object was speeding across the night sky at over 70,000 mph – post processing also turned out to be quite different.

C/2014 Q2 Comet Lovejoy WO GT81 + Canon 550D (modded) & FF | 40 x 20secs @ ISO1,600 + darks | 16th January 2014

C/2014 Q2 Comet Lovejoy
WO GT81 + Canon 550D (modded) & FF | 40 x 20secs @ ISO1,600 + darks | 16th January 2014

 

No Date Object* Name
1 16/01/15 C/2014 Q2 Comet Lovejoy
2 16/01/15 C/2014 Q2 Comet Lovejoy
3 16/01/15 NGC 2244 Rosette Nebula
4 22/01/15 M42 etc Orion Nebula
5 22/01/15 M45 Pleiades
6 22/01/15 Comet Lovejoy
7 22/01/15 Comet Lovejoy
8 22/01/15 Banard’s Loop
9 22/01/15 Banard’s Loop
10 22/01/15 Orion Constellation
11 24/01/15 NGC 1909 Witch Head Nebula
12 24/01/15 NGC 2392 Eskimo Nebula
13 24/01/15 M44 Beehive Cluster
14 24/01/15 IC-443 Jellyfish Nebula
15 08/02/15 M42 Gt Orion Nebula etc
16 08/02/15 Barnard 33 Horsehead Nebula etc
17 21/02/15 M65 Leo Triplet (Galaxies)
18 21/02/15 M105 M96 Group (Galaxies)
19 24/02/15 Venus & Mars
20 25/03/15 NGC 2903 Spiral galaxy – Leo
21 25/03/15 NGC 3842 Galaxy cluster: Leo
22 25/03/15 M 88 Spiral galaxy: Virgo cluster
23 25/03/15 M100 Spiral galaxy: Virgo cluster
24 26/03/15 NGC 4438 Markarian’s Chain
25 26/03/15 M104 Sombrero
26 26/03/15 M53 Globular cluster

 

*Record of quarterly photographic images in 2015, excluding other widefield pictures

APRIL TO JUNE

Things took a turn for the worse in April when I went into hospital for a knee replacement operation.  All went well but it is a major operation and recovery has been slow and often painful, thus prohibiting any real astronomy until September.  It did however provide the time and opportunity to read about astronomy and pursue some MOOC astronomy courses.

After a period of convalescence, I did manage to obtain some widefield camera shots of the planets, the ISS and simple night sky images in the summer.  Whilst not as satisfying as prime focus photography, it was interesting and kept me sane during this otherwise difficult time.

1st July 2015. Bingo = conjunction; though one day later Jupiter has now moved to the right of Venus.

1st July 2015. Conjunction of Jupiter to the right of Venus.

No Date Object Name
27 11/04/15 NGC 4438 Markarian’s Chain
28 11/04/15 NGC 4565 Spiral galaxy-side

 

JUNE TO SEPTEMBER

This period was more of the same until on 19th September, when at last I managed to set-up Fairvale Observatory for the first time since March, what a relief.  As a bonus I was particularly chuffed to achieve a good image of the Andromeda Galaxy but the highlight of this period and the year was the lunar eclipse at the end of the month on 28th September.

For once everything was perfect: a clear sky all night with a perfect view of the eclipse from start to finish.  I stayed up all night and would have to say it was one of the best, if not the best event I have so far experienced since taking up astronomy; apart from being an outstanding imaging opportunity, the ambiance throughout the eclipse was spellbinding.  I was therefore very pleased to obtain an excellent set of images of the entire eclipse, mainly using a prime focus camera set-up with the WO GT81 telescope but also with an alternative  camera and telephoto lens on a tripod.  The memory of that night will stay with me for a long while and, in part, helped to make up for the lost time since my operation in April.

Eclipse Animation 28th September 2015

Eclipse Animation 28th September 2015

No Date Object Name
29 19/09/15 IC 5070 Pelican Nebula
30 19/09/15 NGC 6979 Pickering inc Veil Nebula
31 19/09/15 M15 Globular Cluster
32 19/09/15 M31 Andromeda
33 28/09/15 Lunar Eclipse Entry @ 1 sec intervals
  28/09/15 Lunar Eclipse Totality
  28/09/15 Lunar Eclipse Entry @ 1 sec intervals
34 28/09/15 Lunar Eclipse Exit – camera + tripod
35 30/09/15 IC 1318 Sadr Region (+NGC 6910)
36 30/09/15 IC 1318 Sadr Region – Pt2

 

OCTOBER TO DECEMBER

The final quarter of the year has been very frustrating due to the almost complete absence of suitable imaging conditions, mainly due to cloud cover but even when there was a few clear nights it was of course a full Moon – you can’t win!  I was particularly unhappy as this time marks the arrival of the constellation Orion and all its wonderful imaging opportunities, for which I had new plans.

Given the short focal length of the William Optics GT81 and relatively small aperture, used with a APS-C cropped sensor DSLR camera the resulting field-of-view is a quite large and, where possible, this year I’ve therefore concentrated on objects of 2.5o to 3.0o apparent dimensions.  Together with the modded camera this has resulted in some exciting new images of old and new objects.

However, large as the field-of-view is with this set-up, I have become increasingly aware of the simply enormous scale of some nebulous features such as Barnard’s Loop.  As a result I have become more interested in widefield imaging using just a camera and tripod.  Like prime focus imaging, widefield imaging will also benefit from achieving longer exposures through the use of tracking.  Early in this period I was fortunate to purchase a Vixen Polarie lightweight tracking mount for this purpose, but due to the aforementioned conditions I have unfortunately been unable to use it very much.  In fact it’s fair to say that other than some brief experimentation, it’s hardly been used at all so far.  Notwithstanding, I can see the potential and have high hopes for future imaging opportunities when the clouds part and the Moon is absent.

The year finished with a couple of other purchases that I hope will assist with imaging in 2016:

  • A new laptop – running Windows 10 with a core i7 Intel chip, 2 TB hard drive, 16 GB RAM, dedicated AMD graphics card and an HD 17.3” screen, which I hope will help improve post processing.  Running my preferred Windows 7 operating system, I will continue to use the smaller 13” i5 chip laptop for mount and camera control.
  • Ultra-Wide Angle lens – the truth is I’ve recently acquired this wonderful Sigma 10 – 22mm  f3.5 lens for a trip to the Grand Canyon in April, however, I will of course also be using it with the Vixen Polarie when the skies clear.
No Date Object Name
37 09/10/15 NGC 6888 Crescent Nebula
38 09/10/15 M 74 Spiral galaxy (near Pegasus)
39 09/10/15 NGC 7814 Little Sombrero
40 09/10/15 NGC 7479 Barred spiral galaxy
41 09/10/15 M 31 Andromeda galaxy
42 08/12/15 NGC 1499 California Nebula
43 08/12/15 IC 405 Flaming Star Nebula
44 08/12/15 NGC 2264 Cone Nebula
45 09/12/15 M42 Great Orion Nebula etc
46 08/12/15 Orion Constellation

 

Favourite Images

Despite the lack of activity this year I have been fortunate to obtain some good images and I can only hope 2016 will be just as rewarding.  Acting as judge and jury, my personal favourites in no particular order are:

NGC 2024 Flame Nebula & Horsehead Nebula WO GT81 + modded Canon 550D & FF | 10 x 180 secs @ ISO 800 & darks calibration | 8th February 2015

NGC 2024 Flame Nebula & Horsehead Nebula
WO GT81 + modded Canon 550D & FF | 10 x 180 secs @ ISO 800 & darks calibration | 8th February 2015

 

Eclipse: Inward sequence from umbral contact to totality WO GT81 + Canon 700D + FF | 1/500 to 1/3 sec @ ISO 100 | 18th September 2015

Eclipse: Inward sequence from umbral contact to totality
WO GT81 + Canon 700D + FF | 1/500 to 1/3 sec @ ISO 100 | 18th September 2015

 

M31 Andromeda Galaxy WO GT 81 + modded Canon 550D + FF | 9 x 120 secs @ ISO 1,600 | 19th September 2015

M31 Andromeda Galaxy
WO GT 81 + modded Canon 550D + FF | 9 x 120 secs @ ISO 1,600 | 19th September 2015

 

??????????????

Goals for 2016

After the year that’s just finished I am reluctant to set out goals for 2016 but here goes:

  • Increase imaging exposure times: This is a euphemism for (a) improving equipment set-up and alignment, and (b) start autoguiding. As previously outlined, I have been struggling with both of these issues but one way or another I have to overcome the problems in order to obtain exposure times of at least 5-minutes and hopefully longer;
  • Improve processing: I was pleased to get to grips with Photoshop in 2015, albeit using a very old version, which together with other minor improvements to processing has added to the quality of the final images.  However, I know that even now there is more to be teased out of the existing imaging data for which I am already considering new software;
  • Start widefield imaging: First I just need clear skies in order to get out and start using the Vixen Polarie tracking mount from Fairvale Observatory, with the initial objective of imaging Barnard’s Loop, which has hitherto proved elusive to my current set-up.  However, one of the attractions of the Polarie-DSLR-Tripod combination is its portability, which I’d like to put to good use in 2016 by visiting dark sky areas in the UK.

There are other possible developments which at the moment seem unlikely to eventuate but you never know: a larger probably SCT telescope, a cooled CCD camera, and / or a permanent observatory (well I can dream can’t I?).

 

So all things considered 2015 was a good but not great year.  As a fundamental and important development I had really hoped to start autoguiding and thus increase exposure times but it was not to be.  Certainly the loss of astronomy time between April and September was a major set-back in many different ways.  Notwithstanding, during the remaining times available when I did manage to get outside I believe I achieved some of my best images to date and discovered many new and exciting objects in the night sky, which can’t be bad.  In particular, I am sure the lunar eclipse in September will remain a highlight of my astronomy experiences for many years to come.

Harvest Moon at Totality WO + Canon 700D + FF | 1/3rd Sec @ ISO 400 | 28th September 2015

Harvest Moon at Totality
WO + Canon 700D + FF | 1/3rd Sec @ ISO 400 | 28th September 2015

 

I’m now looking forwards to 12-months of uninterrupted astronomy, clear skies and plenty to report in the WTSM blog at the end of 2016!

Watch this space!

The big picture unveiled

About this time last year I successfully imaged first NGC 6960 the Western Veil, AKA the Witch’s Broom Nebula and shortly afterwards NGC 6992 the Eastern Veil, which includes NGC 6995 AKA the Bat Nebula.  In themselves they are both wonderful parts of the larger but perhaps more elusive (photographically speaking) Veil Nebula.  Located in the constellation Cygnus, the Veil Nebula or Cygnus Loop is formed from the remains of a supernova that exploded in our galaxy about ten thousand years ago and at a distance of almost 1,500 light-years, now spans a 3o area of the sky or 80 light-years in diameter.  At the time I struggled to get these images but was very pleased with the outcome.

cygnus

One year on and I was now thinking about other parts of the Veil, in particular Pickering’s Triangle.  The Triangle might be thought of as the third central section of the Veil, situated between the Eastern and Western Veils but slightly further north.  At some 52 x 35 arcminutes it is itself a significant feature, which surprisingly does not have an NGC catalogue number of its own.

Pickering's Triangle

Pickering’s Triangle

Notwithstanding the success of Pickering’s Triangle, in the end I got much more than I bargained for.  This time using a modded camera, I was able to capture the entire Veil Nebula in one photograph – progress indeed.

The Veil Nebula AKA Cygnus Loop: Ultraviolet view ref. NASA

The Veil Nebula AKA Cygnus Loop: Ultraviolet view ref. NASA

Light from the bulk of the Veil Nebula is very faint and notoriously difficult to image, whilst furthermore much of it is Ha in nature – hence this time finding its way to the camera’s sensor having had the IR filter removed.  The result is a staggering view of the entire supernova, with the Witch’s Broom in the west (right), the Eastern Veil (left) and Pickering’s Triangle nestled in between.  However, in addition extensive regions of delicate, wispy nebulous filaments can be seen flowing everywhere in between – hence the name of Veil.

Veil Nebula / Cygnus Loop WO GT81 & modded Canon 550D + FF | 30 x 180 sec exposures @ ISO 1,600 | 19th September 2015

Veil Nebula / Cygnus Loop
WO GT81 & modded Canon 550D + FF | 30 x 120 sec @ ISO 1,600 | 19th September 2015

Whilst I am very pleased with the resulting photograph, there’s still more to achieve another time.  Apart for the added potential that would be gained from longer, guided exposures, the use of Ha and OIII filters would also uncover even more of the Veil’s diaphanous beauty.

 

 

At the limit

Earlier this month the weather and clear skies produced particularly good imaging conditions that resulted in some excellent pictures; it’s already a distant memory as the weather has since turned cold and cloudy day-after-day – or at least every night except when there’s a full Moon!  With these images knowingly in the bag and the telescope well aligned, I took the opportunity to indulge in a short session imaging some galaxies that happened to be around the Meridian at this time which, as it turned out, were located in proximity to the constellation of Pegasus.

pegasus ANOTATE

Two of the objects (M74 & NGC 7814) were confined to just ten shots and the third fifteen, all at 180 seconds exposure and ISO 1,600.  For such dim and distant objects this in itself was obviously insufficient but still it was fun to experiment.  As expected the resulting images are feint and noisy but the object’s form can be clearly seen and, in the case NGC 7814 – the Little Sombrero, even the edge-on dust lanes are evident.

In order to better understand the limits of the equipment, a comparison of the images with the objects’ physical information given side-by-side illustrates the problems and possibilities for the future.  The truth is that these are all at or beyond the realistic limit of my current set-up but I was interested to see what results could be achieved and I always enjoy their beauty, even if imperfectly captured.

Picture3

Apart from the obvious problem of size, mainly a function of distance in this case, their apparent magnitude is also challenging.  It is interesting to consider that using the 18 megapixel Canon 550D and WO GT81, each camera pixel which measures 4.30μm samples just 1.855 arc seconds per pixel and therefore even the largest of these objects (M74) spans an area of just about one tenth of a degree (0.10o).  Better alignment and longer exposure should tease out more detail but as the recorded image of each object is no more than 2% of the total image the reality is that I am pushing my luck.

Still it is fun and I have managed to capture a few of the photons that left these galaxies so long ago.  As my equipment, techniques and knowledge continue to improve then hopefully so will the limits.  Watch this space!

 

Rock On!

Due to my viewing limitations at Fairvale Observatory planning is essential, with the best imaging range mainly restricted to a zone between 65o and 85o and within +/-20o of the Meridian.  Furthermore, as I am mostly using the William Optics GT81 telescope at the moment, imaging targets should preferably be large – something between 1o & 2o is perfect, such as  the Rosetta Nebula at 1.3o or Andromeda Galaxy at 190’ x 60’.  As luck would have it these conditions are favourable for a number of objects at the moment and I have been somewhat spoilt for choice: North America Nebula, Veil Nebula and Andromeda.

Notwithstanding, for some reason I have until now overlooked the Sadr Region IC 1318, which is also large and in a similar part of the sky as the aforementioned North America and Veil Nebulae but perhaps overshadowed by their notoriety.  In reality it is an enormous area of nebulosity containing many features worthy of imaging which are perfect at this time of the year from my location.

cygnus

Sadr Region: green rectangle indicates the approximate area of IC 1318 image, yellow rectangle the NGC 6888 Crescent Nebula. image

Sadr Region: green rectangle indicates the approximate area of IC 1318 image, yellow rectangle the NGC 6888 Crescent Nebula image.

IC 1318 is a diffuse emission nebula surrounding the star Sadr or Gamma Cygni, which is at the centre of the Cygnus Cross and on the plane of the Milky Way.  The Sadr region is located deep within the Orion arm of the Milky Way about 3,000 light-years from Earth, with Gamma Cygni actually situated closer in the foreground. Such is the size of IC 1318 that its three constituent parts, A – B – C, extend over some 200 light-years or about 4 degrees, which is well beyond the FOV of the WO GT81; how could I have overlooked his enormous area of nebulosity before?  As a result of its size and complexity I also chose to image two other interesting features nearby.

IC 1318 Sadr Region - image inverted & annotated

IC 1318 Sadr Region – image inverted & annotated

IC 1318 Sadr Region WO GT81 + modded Canon 550D & FF | 30 x 120 secs @ ISO 1,600 | 30th September 2015

IC 1318 Sadr Region
WO GT81 + modded Canon 550D & FF | 30 x 120 secs @ ISO 1,600 | 30th September 2015

Situated just above Sadr is the small star cluster of NGC 6910 AKA Rocking Horse Cluster.  Although only 10’ in size the cluster is visually quite prominent, though I struggle to see the little horse that others have identified.  Notwithstanding, it is an interesting and attractive part of the Sadr region.

NGC 6910 The Rocking Horse Nebula as recorded by StarObersever.eu - located just above Gamma Cygni in the previous image.

NGC 6910 The Rocking Horse Nebula as recorded by StarObersever.eu – located just above Gamma Cygni in the previous image.

Located about 2 degrees south west of Sadr is the Crescent Nebula NGC 6888, which is not unlike the Jellyfish Nebula in appearance but is younger in its evolution.  An emission nebula, NGC 6888 is formed by a stellar wind from the Wolf-Rayet star WR 126 colliding with a slower moving wind ejected when the star previously became a red giant. The result is an illuminated shell-like feature consisting of two shock waves, one moving inward and the other outward, producing this amazing spectacle which measures some 25 light-years across.  Near the end of its existence, the star will eventually end its life in a spectacular supernova explosion – now that would be an image.

NGC 6888 Crescent Nebula WO GT81 + modded Canon 550D & FF | 20 x 180 secs @ ISO 1,600 | 9th October 2015

NGC 6888 Crescent Nebula
WO GT81 + modded Canon 550D & FF | 20 x 180 secs @ ISO 1,600 | 9th October 2015

Crescent Nebula - cropped

Crescent Nebula – cropped

Crescent Nebula - cropped + GradientXTerminator applied

Crescent Nebula – GradientXTerminator applied

Whilst IC 1318 has proved to be an excellent and productive imaging target for my equipment, it has become clear that it represents a much, much larger area of nebulosity that incorporates or is at least immediately adjacent to NGC 7000, the North America Nebula.  At a rough estimate this larger area spans a distance of some 2,000 light-years and is some 50-times bigger than the Sadr region.  Like other major areas of nebulosity (Barnard’s Loop) such a scale is way beyond the ability of my equipment and most others without resorting to a mosaic technique.

However, my interest in seeing and potentially imaging the bigger picture has been piqued and I have recently purchased a Vixen Polarie tracking mount, which can be fixed onto a camera tripod with a standard camera and lens in order to take long exposures without forming star trails. This set-up has two advantages over prime focus + telescope imaging: (i) it is highly portable and can easily be taken anywhere in a rucksack, and (ii) by using a camera lens of say <=50mm focal length it is possible to achieve a much wider FOV and thus photograph some of these very large nebulous areas in one image.

Alas the Sadr region is now moving on and it is probably too late to tackle using the Polarie mount but it will be something to look forwards to again next autumn and meanwhile Orion is just round the corner.  Watch this space for developments!

Harvest Time

Thanks to Copernicus and Kepler et al, astronomical events are highly predictable; unfortunately the same cannot be said about the weather.  Since taking up astronomy and despite favourable predictions of clear skies, I have frequently been thwarted by incoming cloud or worse.  When communicating with each other astronomer’s often use the closing of “Clear Skies”, no wonder given the continuous battle we have just to see the sky at night, let alone image it!

Such was my experience in 1982.  At the time I lived and worked in northern South Africa, close to the border with Botswana and the Kalahari Desert.   A lunar eclipse was forecast and in this part of the world there was usually a good chance of a clear sky.  Unfortunately, it was not to be this time either.  We saw glimpses of the eclipse through brief gaps in the otherwise thick cloud that was blowing across the sky.  I’ve missed other eclipses for the same reason, lunar and solar, and as a result have developed a somewhat resigned mindset towards such events, with the probability that the sky would most likely not be clear.  And so despite encouraging forecasts, my expectation for this week’s lunar eclipse was more of the same.

The lunar eclipse of 28th September was very unusual.  At mid-eclipse the Moon was just one hour past its closest approach to Earth in 2015, creating an effect now popularly termed a ‘Supermoon’.  Moreover, the rare combination of this and a full eclipse at the same time results in a distinctive red moon at totality.

I have learnt the hard way that in astronomy Rule-1 is perseverance.  I therefore carried out all the necessary research on the eclipse, undertook a dry run the previous evening and set-up all the equipment in the early evening before heading for forty winks – it was after all hopefully going to be a long night.  The weather had been clear and sunny earlier in the day but was forecast to cloud over shortly after midnight, just before umbral contact!  The sky was clear when I went out later but ominously there were clouds in the west.  Notwithstanding, the sky remained clear all night and the eclipse was nothing less than spectacular.

Total Lunar Eclipse 18th September 2015

Total Lunar Eclipse 18th September 2015

The precision with which astronomical events are plotted is incredible and, guided by various articles and charts all was in place well before the end of the penumbral stage at 2.07am.  Shortly before darkness started to show on the top, eastern edge of the Moon and then exactly at 2.07am the eclipse shadow touched and then crept inexorably across the Moon’s surface.  This was the main phase of the eclipse when the Moon enters the central, dark part of the shadow called the umbra, eventually reaching totality at 3.11am.

Totality lasted 1 hour 12 minutes, during which I just watched through a pair of 10 x 50 binoculars, which probably was the best way of actually viewing the Moon throughout the eclipse.  Of course, with the brightness of the full Moon obscured by the eclipse during this time, the rest of the night sky was plunged into blackness, thus bringing the stars, nebulae and galaxies back to life.  As the Moon was passing through the lower part of the Earth’s umbral shadow, the southerly edge appeared relatively bright during much of totality.  Totality finished promptly at 4.23am as the light started to move across the Moon’s surface once again like an unstoppable wave.  The Moon finally exited the umbra at 5.27am and the show was over until October 2033, on which occasion the Supermoon eclipse will unfortunately not be visible from the UK – I did say it was rare.   However, there will be another total lunar eclipse in July 2018, so it’s not all bad news.

Given my history, this was naturally my first time imaging a lunar or any other eclipse and I am very pleased with the results.  Other than requiring a clear sky, as usual preparation was the key: understanding the timing and dynamics of the event and considering the imaging possibilities.  The most obvious problems to overcome were the Moon’s tracking and movement of the eclipse itself, with its associated impact on changing brightness and contrast for imaging.

The previous evening had also been clear, so I tested a basic DSLR + tripod set-up using an intervalometer to trigger the shots at 5-minute intervals.  With the 200mm telephoto lens 8 pictures were successfully recorded as the Moon tracked across the image frame, at 100mm this increased to 12 pictures; however, the track tended to move out of the side of the frame early as the Moon follows an inclined rather than horizontal track.  Altogether it was a successful and useful experiment for the next evening.

On the night I used the William Optics GT81, with a Canon 550D camera and field flattener, which continuously tracked the Moon and eclipse,  imaging at 1-minute intervals throughout the period inward and outward of the umbra and manually during totality.  Using a fixed ISO 100, it was necessary to continually change the exposure time every five or so minutes in order to compensate for the aforesaid changing light conditions.  In addition, I again used the intervalometer with the Canon 700D and the 55- 250 mm telephoto lens on a camera tripod.

Eclipse: Inward sequence from umbral contact to totality WO GT81 + Canon 700D + FF | 1/500 to 1/3 sec @ ISO 100 | 18th September 2015

Eclipse: Inward sequence from umbral contact to totality
WO GT81 + Canon 550D + FF | 1/500 to 1/3 sec @ ISO 100 | 28th September 2015

Eclipse: Exit sequence to full Moon Canon 550D + tripod | >=1/160 sec @ ISO 400

Eclipse: Exit sequence to full Moon
Canon 700D + tripod | >=1/160 sec @ ISO 400

Eclipse animation

Eclipse animation

The results from both methods turned out well.  With superior optics and tracking, the WO telescope images were naturally better in quality and magnification.  However, the alternative simple camera set-up also produced a pleasing record of the eclipse, perhaps in some way capturing the mood better?

The entire event lasted just over 3-hours, during which found it necessary to look away from the imaging process at times just to enjoy this unusual and exciting spectacle.  The name Harvest Moon is given to the full moon closest to the Autumn Equinox, recognising the time of year at which the crops have been gathered and can itself be an attractive sight.  The coincidence with an eclipse makes for a rare and dramatic occasion, which this time I was able to enjoy completely cloud free from beginning to end – well that’s a first.

Harvest Moon at Totality WO + Canon 700D + FF | 1/3rd Sec @ ISO 400 | 28th September 2015

Harvest Moon at Totality
WO + Canon 550D + FF | 1/3rd Sec @ ISO 400 | 28th September 2015

The Pelican & The Phoenix

As we pass the Autumn Equinox the promise of long and exciting Winter skies is not far off but there are still some wonderful late Summer features around worth imaging before they move away from the Meridian and out of view from Fairvale Observatory.  Following a major operation earlier in the year I’ve been unable to move the heavy equipment outdoors until very recently and have therefore almost completely missed the Summer skies; even as I’ve been getting better in recent weeks, poor skies and other circumstances have stopped my return to astronomy – until now.

Up until shortly before midnight the Cygnus constellation is favourably located close to the Meridian at the moment and at a very high, southerly altitude – perfect for my location – it was therefore here that I chose to make my long awaited resumption to astroimaging last Saturday.  The weather forecast in the morning showed clear skies for that night but by early evening had changed to cloud and looked like being another lost opportunity; on this basis the Flamsteed Astronomy Society had already cancelled their planned evening astronomy session.  However, unlike previous attempts in recent weeks when clear skies were forecast and the cloud rolled in unannounced, this time the outcome was very different, with a clear moonless sky throughout the night – I sometime wonder if the weather forecasters have windows and bother to look outside!

cygnus

Located northeast of the first magnitude star Deneb and some 1,600 ly from Earth is NGC 7000 or the North America Nebula, an enormous H II region that in outline resembles the North American continent.  I first encountered this emission nebula at a similar time last year, which was my first experience of such a feature and I was therefore thrilled to capture part of it in my picture; my blog title at the time captures my feelings – WOW!  However, taking the image using the longer focal length Skywatcher 150PL with a smaller field-of-view (FOV), the picture only captured part of the ‘USA’ and the ‘Gulf of Mexico’.  Furthermore, using an unmodded camera much of the red H-alpha light that is characteristic of these nebulae was not recorded.

Since then my equipment has changed in a number of important ways, so that the William Optics GT81 with a wider FOV would now enable me to image more of the nebula, whilst using a modded DSLR camera would also record much more of the H-alpha light; an additional year’s experience also helped.  This time my target was the related IC 5070 and IC 5067 H II regions otherwise known as the Pelican Nebula, situated just west of NGC 7000 and close to Deneb.

The Pelican Nebula, IC5070 & IC 5067. WO GT81 & modded Canon 550D + FF | 30 x 120 secs @ ISO 1,600 + calibration | 19th September 2015

The Pelican Nebula, IC5070 & IC 5067
WO GT81 & modded Canon 550D + FF cropped | 30 x 120 secs @ ISO 1,600 + calibration | 19th September 2015

With an apparent magnitude of +8 the Pelican is generally less bright than its larger +4 neighbour but is no less exciting.  The bright double star Cygnus 57 and binary Cygnus 56 shine conspicuously just in front of the ‘bird’ and within the ‘body’ respectively.  In addition a bright area at the northern top of the ‘bird’s head’ is an active area of star formation, which ionizes the gases creating the glowing red area.

Whilst missing the impact of being my first H II nebula last time, the larger image of the North America Nebula now captures most of the ‘continent’ and encompasses ‘Central America’.  As a result the picture clearly shows the Cygnus Wall, another bright area of star formation that runs along ‘Baja California’ / ‘northern Mexico’ area.

NGC 7000 The North America & Pelican Nebulae WO GT81 + modded Canon EOS 550D + FF | 30 x 120 secs @ ISO 1,600 + calibration | 19th September 2015

NGC 7000 The North America & Pelican Nebulae
WO GT81 + modded Canon EOS 550D + FF | 30 x 120 secs @ ISO 1,600 + calibration | 19th September 2015

The combined Pelican and North America Nebulae span some 50 ly across, which when imaged together makes a wonderful picture of these spectacular features.  I would be happy with this image at any time but after nearly six months away from astroimaging it’s a very pleasing result.  I feel re-invigorated, like the phoenix has risen again.