Spring Skies

It’s three weeks since the Spring Equinox and two weeks since moving to British Summer Time (BST or daylight saving, GMT+1 hour), the result is that the night sky starts much later in the evening and is rapidly decreasing in length; it is just about six weeks before Astronomical Darkness completely ceases and will not come back until the end of July.  In addition, through a combination of European pollution and fine sand from the Sahara drifting over South East England this week, otherwise clear skies were badly obscured by the resulting haze.  As a result, since shortly before the full Moon on April 4th astronomy has not been possible – until last night.

The march of time and annual movements of the Solar System inevitably lead to a significant loss of quantity and quality of darkness at this time of the year.

The march of time and annual movements of the Solar System inevitably lead to a significant loss of quantity and quality of darkness at this time of the year.

Taken this morning, the contrails over Fairvale Observatory make a striking picture but, together with other pollution are having a significant impact on seeing conditions here at the moment.

Taken this morning, the contrails over Fairvale Observatory make a striking picture but together with other pollution are having a significant impact on seeing conditions here at the moment.

In the early evening twilight sky for a brief period between sunset and astronomical darkness, at the moment Venus is low on the western horizon.  Last night its apparent position was also close to the Pleiades star cluster, making an attractive widefield photograph.  Furthermore, shortly before Venus moved below the horizon and the sky had nearly reached Civil Darkness, the constellation Taurus also became visible to the south west with the bull’s ‘eye’ star Alderbaran and the v-shaped Hyades star cluster clearly evident.

Venus at sunset last night.

Venus at sunset last night: the Pleiades can only just be seen at 2-o’clock to Venus with Taurus on the far left.

Twenty minutes after sunset shortly before reaching Civil Darkness, the Pleiades and Taurus constellation are now quite clear.

Twenty minutes after sunset shortly before reaching Civil Darkness, the Pleiades and Taurus constellation are now quite clear.

Such a picture is a reminder that it is important to consider photography other than telescopic based planetary and deep sky imaging, especially as viewing and imaging conditions become more limited over the forthcoming Summer period.

Alternative Eclipse

With astronomy preparation is everything and so with the prospect of a solar eclipse here today I have been getting ready during the past week.  I looked at and imaged the Sun using my Skywatcher 150PL and a bespoke solar filter last year.  Whilst I was pleased with the results, such is the field-of-view of the 150PL that the resulting image only covers sections of the Sun and a full picture needs to be created using a mosaic; the upside of this is high magnification and therefore better detail of the Sun’s surface.  With the prospect of an eclipse I wanted to try and image the entire spectacle this time and therefore constructed a new solar filter to fit my William Optics GT81 refractor telescope, which has a wider field-of-view and all together better optics that would comfortably image the entire Sun.

Using Baader AstroSolar ND 5.00 safety film and some cardboard, I constructed a tube which fits exactly over the end of the telescope, with the film across the front but not stretched.  By restricting wavelengths the film removes about 99% of the Sun’s light and allows safe viewing but is very difficult to work with and must be treated carefully to ensure it is not damaged; birds can be attracted to the film’s silver finish and may peck holes in it when fitted, it is therefore important to be aware of such threats and, in my case, I also constructed a cardboard slip to cover the filter when the telescope is left unattended during use.  It is also very important to either block off or remove the guidescope and / or finder from the telescope, which without a filter could otherwise also focus on the Sun and either burn out or even worse, cause personal injury.

Home-made solar filter on the William Optics GT81.  When used I blocked-off the red dot finder and removed the finder scope in order to attach another home-made Sun finder.

Home-made solar filter on the William Optics GT81. When used I blocked-off the red dot finder and removed the finder scope in order to attach another home-made Sun finder.

The Players: having constructed the filter and with a clear sky on Wednesday I therefore tried it out and furthermore experimented with exposure settings, with good results.  Earlier in the month I had captured an excellent image of the quarter Moon too.  So I was ready to go, right?  Wrong!

The Moon @ First Quarter  | WO GT81 & Canon 700D + FF| 1/100th sec @ ISO 100 | 24th February 2015

The Moon @ First Quarter | WO GT81 & Canon 700D + FF| 1/100th sec @ ISO 100 | 24th February 2015

GT81 + Canon 700D & Baader ND 5.00 Solar Filter 1/500th sec @ ISO 100 | 18th March 2015

GT81 + Canon 700D & Baader ND 5.00 Solar Filter
1/500th sec @ ISO 100 | 18th March 2015

The Sun 1/20th Sec @ ISO 100 | 18th March 2015

The Sun
1/250th Sec @ ISO 100 | 18th March 2015

Despite my best planning it was cloudy here at Fairvale Observatory this morning, something that has been proving a major obstacle to any astronomy all this month.  Notwithstanding, I have instead experienced an ‘alternative eclipse’.

First, I recorded the change in light during the eclipse.  Though ‘only’ an 85% eclipse here the deterioration in light was very noticeable as well as other features: it got colder and the birds became quieter.

20th March 2015 Eclipse - the sky just after contact at 9.50 a.m.

20th March 2015 Eclipse – the sky at 9.50 a.m. sky just after contact.

Contact + 15 minutes

Contact + 15 minutes

At maximum 85% eclipse.

At maximum 85% eclipse, 9.30 a.m.

Next I ‘looked’ at the progress of the eclipse using Google Sky, which seemed to be very accurate.  It was fascinating to note that four other planets were lined up alongside the Sun at the same time, though of course would not be visible in the daytime sky even if it had been clear.

Eclipse as 'seen' by Google Sky

Eclipse as ‘seen’ by Google Sky

Google Sky screenshot.

Google Sky screenshot.

In between my own real time experience, I watched the BBC coverage of the event which provided some excellent images from the UK and especially from the air off the Faroe Islands where totality occurred.

Uk eclipse courtesy if the BBC.

UK eclipse courtesy if the BBC.

Eclipse totality at 28,000 ft from the Faroe Islands.

Eclipse totality at 28,000 ft from the Faroe Islands.

Baily's beads in hydrogen-alpha image. Faroe Islands March 2015.

Baily’s beads hydrogen-alpha image.   Faroe Islands March 2015.

Diamond Ring hydrogen-alpha image. Faroe Islands March 2015

Diamond Ring hydrogen-alpha image.
Faroe Islands March 2015

An eclipse is astronomy in action and inevitably I’m disappointed not to see and image the actual eclipse here but my alternative eclipse was still interesting and good fun. I was lucky to witness a total eclipse in France in August 1999 so that’s a 50% success rate so far.  The next partial eclipse in the UK will be on 12th August 2026 so I have time to prepare but, of course, will be unable to do anything about the weather again.  Fingers crossed then I suppose!

Another perspective.  Eclipse 2006, taken form the ISS the Moon's shadow passing over Turkey.

Another perspective. Eclipse 2006, taken from the ISS the Moon’s shadow passes over Turkey at 2,000 kph.

Moons

I am currently halfway through an Open University course on moons. Truth be told, after a less than satisfactory OU course on Orion (actually more a beginner’s guide to the Universe) recently, I had not intended to enrol for the moons course but at the last moment signed up.  In comparison, the experience this time has been outstanding: the quality, content and organisation of the course has been exceptional and moons have turned out to be much more interesting than I had expected.

ou_moon_art_2108_exploring_what_makes_a_moon

The combination of space travel and much improved earth-based astronomy, has recently led to an explosion in our knowledge of and about moons.  As a result there are now at least 176 known moons in the Solar System, with every possibility that this will continue to grow.  I have been surprised to learn that the largest moons even exceed the size of some planets.  Numerous space missions have provided amazing close-up pictures which show that many of these moons are far more interesting than previously thought, often with the presence of liquid which may even host life and in some cases volcanic activity is evident, including so-called cryo-volcanism – which is a new term to me.

Geological history of the Moon

Geological History of the Moon

Since starting DSO imaging in August I have somewhat neglected the Solar System but as last week we eventually started to study The Moon itself, it seemed like a good time to image our nearest neighbour once again.  Being just one day before reaching First Quarter, the detail along the Lunar terminator remains very good and I believe has made a beautiful picture.  With the Moon now in its waxing gibbous phase, DSO photography will be ruled out for at least another week, so it’s time to catch up with other matters of astronomy and the like and just enjoy our Moon, clear skies permitting.

IMG_4746crop

The Moon | WO GT81 + Canon 700D & FF | 1/100th sec @ ISO 100 | 24th February 2014

Two’s Company

During the late 20th Century planetary relationships took on a new meaning as a metaphor for the difference between men and women, following the publication of John Gray’s book Men Are From Mars, Women Are From Venus.  Making a beautiful view at the moment, Venus is currently flirting with Mars in the early evening sky, for a very brief period low on the western horizon just after sunset. Its appulse with Mars can be easily seen with the naked eye but the view from Fairvale Observatory lasts only about 20 minutes and therefore requires good seeing conditions and quick action to get a picture.

At the weekend the view was even better, with the crescent of the New Moon adjacent to the field of view of Venus and Mars at the same time but my camera was not ready. Ideally I would like to image its apparition with a telescope but having to act quickly, last night I managed to get a quick photograph of the two planets using a DSLR camera and a 600 mm telephoto lens; the International Space Station flew by shortly afterwards but unfortunately too late get a photograph combining all three, timing is everything.

Later in the month the apparition of Venus will also include Uranus, making an even better show but will definitely not be a case of two’s company, three’s a crowd!

Picture saved with settings embedded.

Shining brilliant white, magnitude -3.9 Venus – top left & the smaller, faint magnitude +1.3, red planet of Mars – bottom right

STOP PRESS!

Another good evening sky this evening and tonight I manged to set-up the telescope to take this beautiful picture of Venus and Mars:

IMG_4731crop (Large)

Lovejoy Part-2

I first became acquainted with C/2014 Q2 Comet Lovejoy just before Christmas and have since been keen to obtain my own image of the object from Fairvale Observatory; at the time I was fortunate to obtain a photograph of the comet from a fellow astronomer in La Palma.  Despite the comet reaching its best positon on January 7th, some 44 million miles from Earth and with the apparent magnitude (brightness) improving throughout January to less than +4.0, unfortunately nature and life prohibited me from attempting this task: Christmas, New Year, travel, bad weather, full Moon etc.  A couple of clear skies did present a good visual sighting through binoculars but no image.

Last week, on Thursday evening, I eventually got my first opportunity but due to very strong winds (hence the clear sky) was unable to even set-up the equipment.  The following evening a cold but clear sky again occurred and this time I took my chance.

Photographing and processing a comet is not straightforward.  Since my last post, Comet Lovejoy has tracked west (to the right) of the Orion constellation and at the time of imaging was located just above the western end of Taurus, before it passes west of Pleiades on 19th January.  The first problem is therefore obvious – it’s travelling very fast, about 82,000 mph.  Fortunately Livecometdata.com provides real time information on the comet’s journey, which is both impressive (how does it do this?) and very useful.  Inputting the real time RA and DEC location data into the SynScan handset, the mount slewed straight to the comet, which was just off-centre of the field of view.  And thus I had my first, proper live view of a comet – fantastic! Now for the tricky part: how to get an image?

I had already posed this question on Stargazers Lounge and had a number of useful suggestions. Of course, whilst the mount tracks the celestial sphere, the comet is making its own way through the sky, which is not the same path as the stars seen from Earth; I believe it is possible to track the actual comet but that’s too difficult for me. Therefore, it is necessary to err towards lots of shorter exposures to avoid blurring; the longer the exposure the more likely it is the comet’s tail can also be captured in the image but it is a fine line between achieving this and blurring.  In the end I took two sets of images at 20 seconds and 60 seconds – probably too cautious but I was happy with the result and will be better prepared for my next comet, whenever that is.

Then came the next obstacle – stacking and processing.  I had not thought about this before but in the world of stacking, the software is unable to distinguish the comet from stars.  As a result it is necessary to identify the comet in each light frame by manually tagging it; at this point I regretted taking x40 exposures! Deep Sky Stacker will then stack using one of three procedures which basically prioritises either the comet or the stars or a combination of both – I chose the latter.  As usual post processing in Photoshop is then used to improve the final image.

C/2014 Q2 Comet Lovejoy WO GT81 + Canon 550D (modded) & FF | 40 x 20secs @ ISO1,600 + darks | 16th January 2014

C/2014 Q2 Comet Lovejoy
WO GT81 + Canon 550D (modded) & FF | 40 x 20secs @ ISO1,600 + darks | Fairvale Observatory 16th January 2015

Whilst I am very excited to have successfully photographed Comet Lovejoy, I was less than impressed by the stacked image and actually prefer the original.  Processing comet images takes the dark art of processing to a new level and I feel I’ve only reached the learning foothills so far.

Lovejoy will be in the sky for some weeks to come as it tracks across Andromeda and Perseus during February and into Cassiopeia in March.  Whilst the best may be almost past, I certainly hope to follow its progress and, subject to conditions, might even attempt to image it once again before it continues its 8,000 year orbit into deep space.  However, for now I’ve got my comet and am well satisfied – I will spend the intervening winter days practicing my comet stacking.

Comet Lovejoy WO GT81 + Canon 550D & FF | 15 x 60 secs @ ISO1,600 + darks| 16th January 2015

Comet Lovejoy
WO GT81 + Canon 550D (modded) & FF | 15 x 60 secs @ ISO1,600 + darks| Fairvale Observatory 16th January 2015

Reflections – 2014

2014 has been my first full year of astronomy and I thought it would be useful (for me) to recap, thereby hopefully providing some encouragement and momentum for 2015. It’s been a good year which I have enjoyed but it only gets a little easier, slowly, and I can see many challenges ahead.

reflect2

JANUARY TO MARCH

IMG_2431 Stitch (Medium)

At the start of the year I was still getting to grips with my original basic equipment, purchased in 2013 as an introduction to astronomy to see if I liked it: EQ3-2 mount, Skywatcher 150PL telescope and two basic Plössl eyepieces and Barlow.  Though good, the shortcomings of the equipment quickly became apparent even for modest viewing tasks, so I soon made some important additions.  In no particular order these were: RA and DEC motor drives, a Telrad finder and two better quality, wide-angle eyepieces.  All of these items made a noticeable improvement to my astronomy and eventually my growing interest in astrophotography.

As a result, at the start of the New Year I decided to purchase a Canon 700D DSLR camera, which has since opened up a whole new world, literally.  I have considerable SLR experience and had been using a compact digital camera for some years but the need to understand and use the technology embodied in a DSLR for astrophotography is, as they say, a whole new ball game.

At this stage, my approach to astronomy was to try and learn the basics first by using basic equipment, thereby understanding the nuts and bolts of astronomy before moving on to more technical processes and software driven equipment. Moreover, I hoped such an approach would provide a good, long-term foundation of knowledge to undertake more ambitious tasks one day; walk before you run.

Although a member of the Flamsteed Society, its location at Greenwich does not lend itself to regular, on-the-ground astronomy from which I might otherwise learn first-hand from other members. Unfortunately more local clubs are also absent, so the learning curve has been steep and mostly personal and hands-on, though I must recognise the extensive and generally excellent help gleaned from the internet and various astronomy blogs, noteworthy of which has been Stargazers Lounge.  I have often been disappointed by some of the retailers who, in my experience don’t relate well to customers and / or provide clear, helpful guidance or adequate aftersales support.  My interpretation is that they consist of persons who have probably started astronomy shops as an extension of what was previously a hobby and often lack the commercial and personal skills required for such a business. Thankfully there are exceptions and it is they who I shall return to with my business in the future, whenever possible.

  Date Object* Feature  / Name
Feb Jupiter Afocal Images
Moon DSLR mosaic
Greta Orion Nebula Afocal Images

*Record of photographic images taken in 2014

APRIL TO JUNE

By now I knew I wanted to pursue astronomy as a hobby and, in order to fast track my learning process and experience the subject at a higher level, I undertook a one week astronomy course at the private Tacande observatory in La Palma. The equipment there was outstanding and so was the night sky and guidance provided by the owner, Joan Genebriera.  Afterwards I was hooked and my aspirations were sky high, literally.

Virgo Group

Virgo Group – Galaxy Supercluster| Canon 350D from Tacande Observatory, La Palma

Returning from La Palma brought me back down to Earth, however, undeterred I felt it was time to try my hand at webcam planetary imaging. On the face of it easy but, as usual, looks can be deceiving. Online advice indicated that it was possible to adapt and rig-up an old webcam for such purposes but my attempts to do so using a spare Logitech webcam only ended in misery.  I therefore decided to bite-the-bullet and purchase a more suitable, off-the shelf one. The Holy Grail for entering webcam imaging is apparently the Philips Toucam but alas it is no longer made and finding one second-hand is very difficult.  I therefore soon realised that it would be necessary to purchase a new webcam and, furthermore, it made sense to get one which was specifically made for astrophotography, the theory being it would work out-the-box.  As a result I purchased the ZWO ASI 034 MC colour webcam but, despite my best efforts was unable to get a picture and decided to visit the retailer in person, determined to find out if it was me or the camera; as it turned out it was neither.

The first problem turned out to be the camera software SharpCap, which despite assurances, would not work with the camera.  Next, for reasons I still don’t understand, the alternative FireCapture software would also not work until a more up-to-date version was downloaded.  Notwithstanding, it also became evident that the camera would not work through a USB 3.0 port – though at the time this was not specified anywhere in the accompanying literature.  Finally, with the camera plugged in to the USB 2.0 port and the up-to-date version of FireCapture, it worked!  Getting to this point took me countless hours at home, a long trip to the retailer (who was very helpful) and then still some 2-hours to get it working.  So much for working out-the box!  This again seems to be a feature of astronomy.

From this and other experiences with equipment, software and manufacturers I have concluded that the world of astronomy is fraught with unnecessary problems often arising from just inadequate advice (see previous comment). It is assumed, by others: manufacturers, retailers or more technically minded astronomers, that the user will possess similar skills to make things work but, as many /most of us are newcomers this is, to say the least, an unhelpful assumption.  I have therefore learned that the internet is your friend.  Through the use of various online sites and blogs, other astronomers have given their very helpful and often not inconsiderable time and advice, for which I am eternally grateful.

Whilst this was all happening at the retailer, I took the time to review the camera I had purchased more closely and at the last moment decided to exchange it for the inevitably more expensive ZWO ASI 120 MC version, which unlike the 034 MC version can be used for autoguiding – I hoped futureproofing the purchase, time will tell.  It is interesting to note that the current version of this camera (a) comes with different software and (b) has been upgraded to work with USB 3.0 – well why wouldn’t it in the first place, as most computers now use this specification?  This suggests to me: did they really think about the camera’s design and operation properly at the beginning?  However, following this breakthrough using the webcam for imaging was still to provide its own problems, which I am still grappling with.

SW 150PL x2 Barlow & ZWO ASI 120 MC

SW 150PL x2 Barlow & ZWO ASI 120 MC

Using the ZWO ASI 120 MC I first started imaging Saturn, with some success. However, using the EQ3-2 mount to find, focus and image was very difficult, especially when I tackled Mars. In this case the size of the planet makes all the aforementioned issues even more difficult but, after lots of attempts I managed to get an image – altogether with plenty of room for improvement but satisfying nonetheless. I subsequently discarded the webcam in favour of the DSLR, with which I am more comfortable and due to the lack of suitable, mostly planetary objects through the summer period.  With the return of Jupiter in recent weeks and the prospect of using the ZWO webcam for autoguiding, I have returned to using it again but given the time that has since elapsed, I need to relearn its use all over again!

At this point I had concluded that I wanted to pursue astronomy and astrophotography.  I was also drawn inexorably towards astroimaging DSO objects; they provide numerous, albeit more difficult targets at all times of the year and I have found their combination of otherworldly beauty and science fascinating – I am now on a slippery slope that I feel will last for years!  The implications of this conclusion and based on what I had learned over the preceding year about my basic equipment had only one consequence, I needed better equipment.  There are astronomers who will say this hobby can be done cheaply, frankly I don’t believe it.  Even buying second hand and generally making-do, the need for another piece of equipment never seems to stop – ask my wife.

Resigned to this course of action and the inevitable extensive analysis of what equipment was best suited, I reached a conclusion of what equipment I needed surprisingly quickly, though still prevaricating over innumerable makes and models available.  In the end I purchased an AZ-EQ6 GT mount and William Optics GT81 FPL3 triplet achromatic refractor.  I could have shaved £400 to £500 off the cost by purchasing other very good but cheaper makes and models but the WO is a beautifully tactile piece of obviously very well made equipment, which is a pleasure to own and use.  I had originally intended to purchase an HEQ5 mount but on taking the long view (no pun intended) and considering the superior and critical payload capacity decided to move up to the EQ6, which then became the AZ-EQ6 GT for its superior belt driven mechanism and even better payload.

Date Object* Feature / Name
April M104 Sombrero Galaxy
M1 Crab Nebula
M3 Globular Cluster
M84 Lenticular Galaxy
M95 & M96 Group Spiral Galaxy
Virgo Group Supercluster of Galaxies
NGC 4435/38 The Eyes (Nonet) Galaxies
May The Moon
Mars
Saturn

JULY TO DECEMBER

The absence of good astronomical darkness approaching the Summer Solstice at the end of June and onwards until later in August, makes imaging difficult at this time of the year.  Furthermore, the summer skies are generally less interesting and altogether provide limited opportunities.  As a result the one object remaining, that hopefully dominates the sky at this time of the year, is the Sun.  It was therefore time to start solar astronomy.

Given the obvious dangers I approached the task carefully, getting a made-to-measure Baader Astro Solar filter for use with the Skywatcher 150PL.  Rightly or wrongly, at this initial stage I decided to use the 150PL as I figured the larger, open design of the Newtonian reflector would help cooling.  The result was fascinating, with sun spots and general surface granulation clearly visible. However, the set-up has two drawbacks: (i) the resulting FOV is small and requires six or more images to cover the whole of the Sun, and (ii) such a filter only produces a view of white light, not allowing the more spectacular features evident at a other wavelengths, such as prominences, to be viewed.  For this a considerably more expensive solar telescope or highly specialized filters are required – such is the fascination of our local star I can see the time I will want to pursue this branch of astronomy further.

Sun Mosaic SW 150PL + Baader Astro Solar Filter + Barlow x2 | Canon 700D DSLR

Sun Mosaic
SW 150PL + Baader Astro Solar Filter + Barlow x2 | Canon 700D DSLR

Having since used the new equipment for nearly six months now I have no regrets – you get what you pay for.  However, as usual there have been problems to overcome.  The mount is very solid and was a real pleasure to use but from the outset I have faced one big problem – polar alignment.  With no view of Polaris or any of the northern sky, as my house is in the way, combined with restricted views to the south, east and west due to adjacent housing and trees, the only options were drift alignment or the polar alignment routine that I latterly discovered in the SynScan handset. For the moment the SynScan method has become my preferred technique but it can still be problematical, as it is quite fiddly and often the stars chosen by SynScan are not always visible e.g. it is not uncommon that at times all the alignment stars provided by Synscan are located in the northern sky and cannot be seen because of the aforementioned problems.  However, I am getting better and with diligence and patience can now get to within 30” or less of true polar alignment, which has allowed exposures of up to 180 seconds.  I have tried drift alignment a few times but have difficulty finding suitable stars on the horizon, as I basically don’t have an horizon! Going forwards I am considering the use of Alignmaster software, which looks very useful for this purpose, though the lack of a northerly view might still be a problem.  In addition, I hope the ultimate goal of autoguiding should further enhance tracking accuracy even without perfect polar alignment – we shall see.

The second problem initially encountered was achieving an image when using the William Optics field flattener / focal reducer.  Try as I may, I could not get an image with the William Optics GT81 + field flattener + camera combination and after a few evenings trying became desperate.  How could it be so difficult?  All this money for top-end equipment and not even a lousy image, let alone a good picture. With the help and encouragement from members of Stargazers Lounge, I had another go.  This time I was more diligent with the set-up and at first using a very bright, easy to see star, was at last able to achieve a camera image and good focus using a Bahtinov mask.  In a nutshell, the problem was that the point of focus is very, very critical, just a fraction of a millimetre out and the image disappears.  Now I know this it’s quite easy but nobody points this out, least of all the manufacturer or retailer, who provided little to no instructions – I am learning this is also something common in the world of astronomy, which I find quite unacceptable.

So, after some weeks of trials and tribulations, the new equipment is mostly working very well and I have been able to successfully image a wide variety of objects.  There’s plenty of room for improvement but I have obtained some enjoyable and often quite exciting photographs.  Now for the next challenge, which has just started: computer control and autoguiding.

NGC 6960 AKA The Witch's Broom Canon 700D | 20x90 sec + darks.bias/ flats @ ISO 800

NGC 6960 AKA The Witch’s Broom
Canon 700D | 20×90 sec + darks.bias/ flats @ ISO 800

With DSLR or CCD / webcam imaging, processing is at least equally important as the original image capture.  In the later part of the year I have therefore also started to tackle this dark art.  Whilst compilation software such as Deep Sky Stacker and Registax requires some understanding to set-up, it is with post-processing that the final image can be made or lost.  As a result I am using the extra time indoors to try and master the various techniques, with mixed success.

I should also note that during this period my elder daughter, Alison, persuaded and then helped me set-up this website.  It has proved a useful discipline for organising my thoughts and images.  I am very grateful for her help and have surprisingly enjoyed recording my astronomy endeavours. Although intended as a personal record, I note from the underlying website provider that it has been read far-and-wide across the world – 36 countries this year – which is also gratifying.  I would love to hear from anybody via the WTSM site: questions, what are you doing, comments & feedback etc?

Date Object* Feature / Name
July M57 Ring Nebula
M13 Globular Cluster
M15 Globular Cluster
Aug M27 Dumbbell Nebula
M31 Andromeda Galaxy
M11 Wild Duck Cluster
ISS International Space Station
NGC 6888 Crescent Nebula
The Sun
Sept NGC 7000 North America Nebula
NGC 6960 Western Veil Nebula & Witch’s Broom
NGC 7380 Wizzard Nebula
M31 Andromenda Galaxy
IC 1396 Elephant’s Trunk Nebula
M2 Globular Cluster
Oct M45 Pleiades Open Star Cluster
Uranus
M33 The Pinwheel Galaxy
NGC 6992 Eastern Veil Nebula
NGC 6995 Bat Nebula
M42 & M43 Great Orion Nebula
NGC 7320 Stephen’s Quintet (Galaxies)
NGC 7331 Deer Lick Group (Galaxies)
NGC 7814 Spiral Galaxy
Nov NGC 1909 Witch Head Nebula
IC 434 Horsehead Nebula
NGC 2024 Flame Nebula
NGC 1973/75/77 Running Man Nebula
Dec M1 Crab Nebula
ISS International Space Station
NGC 2264 Christmas Tree Cluster & Cone Nebula etc.
NGC 2261 Hubble’s Variable Nebula
NGC 19818 Open Star Cluster
NGC 2244 Rosette Nebula
M35 Open Star Cluster
M78 Reflection Nebula

??????????????

Goals for 2015 are:

  • Transfer the mount to EQMOD computer control – I have already linked the equipment indoors, together with Cartes du Ciel, but have yet to use it outside live.
  • Upgrade camera control software – again I am already trialling Astrophotography Tool (APT) indoors, which looks good and provides lots of flexibility, though in some ways I still like the EOS Utility software, which uses more simple and therefore reliable control choices.
  • For astrophotography this is the Holy Grail and, if successful, should enable significantly longer exposures and thus better detail and sharper images to be achieved.  At the time of upgrading my equipment in the summer I also purchased a William Optics 50 mm guidescope – all I need to do is get it working! This will require two further pieces of software: (i) Push Here Dummy or PHD, which is responsible for controlling the interaction between the guidecope and the mount, and (ii) Astro Tortilla, which undertakes a process called ‘plate solving’, whereby using actual pictures taken at the time of set-up, it then recognises the section of the sky it (the telescope) is looking at, identifies the object in the field of view and using this information ensures that the telescope (and thus camera) are pointing exactly towards the chosen object by iteratively interacting with the other guiding software.  As a fan of the KISS principle, I must admit to being somewhat intimidated by all this but am assured by others that it is not so bad to use  (famous last words) and once up and running, will have a major impact.  We shall see!

Even at this stage, I can already see the need for additional equipment.  With numerous Ha-emitting nebulae a modified DSLR camera is beginning to seem essential and probably a more powerful computer for image processing.  I am sure this list will grow as the year progresses.

All-in-all, I am pleased with my progress during the past year, with a noticeable improvement since acquiring the new equipment.  There have been more highs than lows and, I suppose, that’s a result in itself.  It is very exciting when you first see Saturn, Jupiter or Mars and then image them but I have discovered that my metier and main enjoyment comes from DSOs, in particular nebulae.  I find their very nature beguiling; beautiful to view, challenging but very rewarding to image and scientifically fascinating.  I am therefore sure that in 2015 they will remain my main targets but, notwithstanding, there are many other objects worthy of attention, including in the UK a partial eclipse of the Sun in March.

Watch this space! 

Orions Sword. Top to bottom: NGC 1981 Open Star Cluster, NGC 1973/75/77 Nebulae, M42 & M43 Great Orion Nebula & the binary star Hatsya. WO GT81, Canon 700D + FF | 30 x 120 secs + darks/bias/flats @ ISO 800

My picture of the year: Orions Sword. Top to bottom: NGC 1981 Open Star Cluster, NGC 1973/75/77 Nebulae, M42 & M43 Great Orion Nebula & the binary star Hatsya.
WO GT81, Canon 700D + FF | 30 x 120 secs + darks/bias/flats @ ISO 800

 

Christmas Comet

C/2014 Q2 Comet Lovejoy is a long-period comet, only recently discovered by Terry Lovejoy in August; it is the fifth comet discovered by Terry. By December 2014 the comet had brightened to a magnitude of +7.4 and by mid-December had become visible to the naked eye with dark skies.  This weekend on 28th and 29th December,  the comet will pass 1/3° from the globular cluster M79, subsequently brightening in January  to a magnitude of +4.0 to +5.0, as it moves west of Orion and onwards towards Aries and Triangulum, thereby becoming one of the brightest comets for years. On 7th January 2015 the comet will be at its closest to Earth at a distance of 43,600,000 miles.

C/2014 Q2 Comet Lovejoy Transit

C/2014 Q2 Comet Lovejoy Projected Track

Before entering the planetary region in the 1950s epoch, C/2014 Q2 had an orbital period of 11,500 years, after leaving the planetary region in the 2050 epoch it will have an orbital period of about 8,000 years. Thus, unbeknownst to me, it has been with me since I was born and will remain with me for the rest of my life!

I have not seen the comet yet but have just been sent an excellent picture just taken from Joan’s Tacande Observatory in La Palma , which I visited earlier this year.  Of course, I’ll be looking out for C/2014 Q2 at the weekend and hope to follow its journey during the next few weeks and beyond.  Well done Terry and thanks again Joan.

C/2014 Q2 Comet Lovejoy  R120 Canon 350D |  180 secs @ ISO 400 | taken by Joan Genebriera at Tacande Observatory, La Palma, 23rd December 2014

C/2014 Q2 Comet Lovejoy
R120 + Canon 350D | 180 secs @ ISO 400 | Taken by Joan Genebriera at Tacande Observatory in La Palma, 23rd December 2014

The Kiss

The EU political project has not exactly been a roaring success but, in stark contrast, European science, engineering and technology is second to none and is still pushing the boundaries. In the spirit of centuries of unique European scientific developments, discoveries and vision that are responsible for much of the modern world now around us, today the European Space Agency (ESA http://www.esa.int/About_Us/Welcome_to_ESA/What_is_ESA ) successfully placed a lander on the comet  67P/Churyumov–Gerasimenko .  As if the 10-year journey of over 6.5 billion kilometres wasn’t enough, the spacecraft Rosetta successfully delivered its passenger, the lander Philea, to its landing Site-J (now renamed Agilkia), on the surface of a comet moving at 40,000 mph through space http://www.livecometdata.com/comets/67p-churyumov-gerasimenko/ .  Launched in 2004 its technology is by now well out of date – at the time the iPod had only just been launched – but the accomplishment is nonetheless fully 21st Century.  Science fiction today became science fact, even Major Tom would be impressed, certainly Captain Kirk (William Schatner) Tweeted his best wishes during the landing.

Looking back at the Rosetta spacecraft from the Lander Philea as is separated earlier today and began its 7-hour journey to the surface of the comet.

Looking back at the Rosetta spacecraft from the Lander Philea as it separated earlier today and began its 7-hour journey to the surface of the comet.

In the same spirit of watching the first lunar landing by Neil Armstrong and Buzz Aldrin in 1969, I have followed events live all day.   The suspense was almost as exciting. The control room was in stark contrast to 1969 but with just laptops and flat screen terminals that could have come from PC-World; it looked like a low key trading room rather than the centre of a major scientific space adventure. Such is the distance from the comet to Earth that final confirmation of the landing took 28 minutes and 20 seconds to arrive, 28 minutes of suspense. Touchdown was at 16.02h GMT.

As Philea left for 67P/C-G it was described by ESA scientists to be moving in for the kiss, wow what a kiss.  I can’t wait to see pictures from the comet’s surface and especially the science that will emerge later.  Chapeau ESA!!

https://watchthisspaceman.wordpress.com/2014/11/03/rendezvous/

Philae on its descent from Rosetta to the surface of Comet 67P/Churyumov-Gerasimenko

Philae on its descent from Rosetta to the surface of Comet 67P/Churyumov-Gerasimenko

Copernicus was right!

OK it’s not news but a tribute to the man who opened our eyes to the way the Solar System works.

Like most newcomers to astronomy viewing and imaging starts at home and that is the Solar System. So it was with my Skywatcher 150PL Newtonian scope last year – first the Moon (of course) and then on to the planets, in this case it had to be Saturn – surely the most exciting / beautiful planet? Despite my growing years it was only in April 2013 I got to see Saturn for the first time through the 13″ Astrographic Refractor at Herstmonceaux  http://www.the-observatory.org/telescopes. WOW I am hooked and following much previous prevarication over what to buy now rapidly sought to purchase my first telescope in the form of the aforementioned 150PL with a basic EQ3-2 mount.

The early summer of 2013 was very good for viewing Saturn and so it was I spent many late nights and early mornings gazing at this wonderful planet. Of course I had to get a photograph but this was easier said than done. Despite years of SLR photography I did not own a DSLR, considering them too bulky and inconvenient for day-to-day use, I therefore resorted to my trusty Canon Ixus 860IS to try my hand at afocal photogrpahy i.e. holding the camera up to the eyepiece.  The results were awful so I purchased a camera bracket that clamped to the eyepiece and held the camera more steady, unfortunately this too was little better. I came to the conclusion that this wasn’t going to work and in some shape or other I would need to take a video instead, with subsequent processing through Registax (more about this another time) which is able to sort and stack the best frames to produce a final, single image.

I tried the cheap route first by adapting an old Logitech webcam I already had (this involves removing the front lens so the light fall directly on the sensor) but could not get an image and therefore in the end decided to purchase a ZWO 120 MC http://www.365astronomy.com/zwo-asi120mc-colour-13-cmos-usb20-camera-with-autoguider-port-p-3536.html which also provides an autoguiding function, as yet not tested. Again I encountered major problems getting an image but after visiting the retailer Zoltan at 365 Astronomy, who also had great difficulty getting it to work by using a more up-to-date version of Firecapture, I was finally up and running – all I needed was a clear sky and an object to image. Of course, it had to be Saturn.

As I have now learnt every facet of astrophotography is difficult and this was no exception. The problems this time fell into two categories: the general capture settings and that old thorn in the side, focus.  It took a while but eventually I had Saturn  on film which, after some Registax processing I successfully turned into a picture.

ZWO 120MC

ZWO 120MC

Still plenty of scope for improvement but it is clearly Saturn and to my eyes looks great.

With this success under my belt, earlier this year I tried Mars which, as I was to find, is a notoriously difficult subject – the problem being size i.e. it is small. Depending on their respective orbits relative to Earth, the angular diameter  http://en.wikipedia.org/wiki/Angular_diameter of Saturn varies from 14.5″ to 20.1″, with Mars 3.5 to 25.1″.  Notwithstanding, I eventually managed to capture some video, which looked awful, but thanks to Registax emerged looking like, well ….Mars!  It has been described as ‘pizza looking’ but for the moment I’m happy.

223242_castr

ZWO 120 MC + Registax

I had hoped to get Jupiter too but for various reasons (which I can’t remember) it didn’t happen, so that’s on the ‘to-do’ list next time it comes around.  And thanks to Nicolaus Coperincus we will be able to predict when that is.

The Moon: Up close and personal

Last night was the so called “Supermoon” of 2014 as, in its eliptical orbit, the Moon passed at its closest point to Earth for this year. Its relative closeness to Earth, plus atmospheric lensing, caused by the Moon’s location in the southern part of the Zodiac, means that for observers in the higher latitudes of the Northern Hemisphere the Moon appears particularly large at Full Moon on 10th August. As a result it is possible to get good photographs without the use of a telescope so, in my case, I shot this using a 200mm telephoto setting:

Supermoon from Fairvale Observatory 10th August 2014 Canon 700D | 200mm telephoto | 1/160th f11 ISO200

Supermoon from Fairvale Observatory 10th August 2014
Canon 700D | 200mm telephoto | 1/160th f11 ISO200

Of course, since getting my telescope last year the Moon has been a frequent subject for viewing and imaging, with some very close-up results in some cases almost seeming to take you there. Viewing the Moon is best during the early stages of a new “waxing” Moon, particularly along the edge where the dark section meets the light section – the so called “terminator”. Views of this can be stunning, with the WO GT81 and a x2 Barlow an 10mm eyepiece it almost seems like you are about to land on the surface!  Very soon after first looking at the Moon I got a Moon filter, which I have found essential as the Full Moon approaches and the light is almost otherwise blinding; the filter reduces the glare and makes observing more comfortable.

Whilst a good view of the entire Moon can be obtained, such is the optics of the 150PL (and I think the WO GT81) that to get focus the DSLR camera has to be used in conjunction with a Barlow lens. Unfortunately this results in such magnification that the Moon can only be imaged in parts, rather than as a whole but the image is nonetheless exciting:

The Moon 11th February 2014 Canon 700D | SW 150PL 2xBarlow | 1/100th ISO 400

The Moon 11th February 2014
Canon 700D | SW 150PL 2xBarlow | 1/100th ISO 400

Notwithstanding, using a suitable computer programme these individual images can be stitched together to produce a photo mosaic, such as this one made from x6 separate sections of the Moon.  The result is impressive:

Photo mosaic 11th February 2014

Photo mosaic 11th February 2014

Finally and probably most amazing is using a webcam / CCD to video the Moon.  Once again this needs to be undertaken using a Barlow and the resulting magnification is even higher but with spectacular results as can be seen with this video taken with the ZWO 120 MC in May this year(the shimmering effect is the Earth’s atmosphere): https://www.youtube.com/watch?v=13Nb_lBBaxk&feature=youtu.be

Snapshot of Moon video (see above link) ZWO 120 MC

Snapshot of Moon video (see above link)
ZWO 120 MC