The future is not what it used to be

 

sftf

If I’m honest my astrophotography has so far often been – never mind the quality feel the width!  That is to say, I have tended to chase objects – nebulae, galaxies, planets, solar – in order to learn about my equipment and the night sky as well as just have fun recording images of these distant worlds.  Nothing wrong with that is there?  It’s not that I don’t aspire to obtaining the best image possible and I have made good progress since starting out but I’ve often felt constrained by circumstances.

Although I’ve generally been happy with my images, it’s a fact that there are a number of factors that altogether make astrophotography difficult, especially here at Fairvale Observatory:

  • Poor weather & persistent cloud cover
  • The Moon
  • Buildings & trees obscure sightlines
  • Light pollution from Gatwick airport
  • Numerous aircraft passing overhead
  • Equipment problems
  • Software problems
  • Equipment and software failures
  • Equipment limitations
  • Need to assemble equipment each time
sky-mosaic

Bad weather, frequent cloud cover, limited sightlines, aircraft trails and the inevitable monthly occurrence of the Moon limit imaging opportunities here.

Under these circumstances I usually need to grab what I can, frankly it’s a miracle I’m able to achieve anything sometimes; Met office statistics for the six-months period from September 2105 showed cloud cover was a record 68% compared with an historical average of 32% for that time of year, as a result it was unusual to be able to undertake astrophotography more than once month, if that!  Wherever possible I therefore have to target those items that I can improve easily, quickly and cheaply dealt with, which is mostly equipment.  Buoyed by renewed enthusiasm from my recent autoguiding success, I now intend to concentrate on changing some key items that I hope will eventually bring about more noticeable improvements.

sign2For a while I have been thinking about getting a larger telescope, in order to get to those faint fuzzies that are beyond the capabilities of the otherwise excellent William Optics GT81.  As usual the choice is a minefield of possibilities, each with inevitable imaging pros and cons!  I started thinking about a Ritchey Chrétien or Schmidt Cassegrain but I have really appreciated the qualities of the aforementioned WO GT81 and am now erring towards a larger refractor.  However, after further consideration I am now considering a change of priorities.

In September I was fortunate to attend a presentation on image processing by Nik Szymanek who, it has to be said, really knows his onions when it comes to astrophotography; I was intrigued and impressed to find out he also hails from my neck of the woods when I was a teenager in Essex and is an accomplished rock drummer – something I also used to meddle with in the past – what a geezer, as he would say.  The talk was very instructive and I am now ploughing my way through Nik’s fabulous book on the subject called Shooting Stars (published in magazine form by Astronomy Now).  Such personal, first-hand and relevant guidance is difficult to find in astroimaging and the book has a wealth of really practical information and useful advice that I wished I’d known sooner.  Good equipment is important but in the world of digital imaging the significance of processing cannot be overstated.  It’s a dark art alright (no pun intended) but Nik’s work has strengthened my resolve to improve my processing knowledge and I’m even more determined to raise the bar during the forthcoming winter.

20160708-shooting-stars-for-storeFollowing Nik’s talk and listening to others, the penny that has now dropped is that for the moment it’s not the telescope but the camera that needs changing.  After careful thought it’s apparent that I already have very good set-up, yes a bigger aperture would be good for those smaller fuzzies but the 81mm apochromatic refractor I already own is an outstanding telescope that still has much potential when combined with the AZ-EQ6 mount and now autoguiding.

99bc97fcafac09f14ac69801dab00398

The addition of a modded DSLR at the beginning of last year had a significant impact on my images, especially with Ha dominant DSOs which I literally saw in a new light using this camera.  I have continued with the DSLR for a number of reasons but mainly because I am familiar with such cameras which are relatively easy to use and produce reasonable results when starting out with astrophotography.  However, listening to Nik and reading the forums and elsewhere, I have come to accept that the best way forwards should now be a CCD-type camera.  As a result I am deep in my research of CCD issues and possible cameras – this could take some time and won’t be cheap!

The operation of CCDs is quite different to a DSLR and I’m sure will involve a whole new period of pain but it’s clear that this is the best route for now if I am to significantly improve my astrophotography.  Other than the technical challenges CCD imaging presents, I am however concerned about the greater number of frames needed for LRGB + calibration and how that’s going to work with the weather restrictions and other problems I have but it’s got to be worth a try.

However, before setting out on this daunting task I first slewed the camera towards a few familiar objects just to experiment with guiding and assess the benefits it might bring to my imaging in the interim.  A spell of unusually good weather in late August – early September was too good to miss and with guiding I was able to achieve exposures of up to 8 minutes.  However, for the moment I continued to limit the number of Subs and calibration frames just to ensure I could shoot more objects in the available time, plus you never know when the next bank of cloud will roll in – old habits die hard!

download

Looking at the results below demonstrates my progress when compared with earlier images but the limited number of frames and calibration has probably restricted the full benefit of what might be gained from guiding and some shots remains quite noisy. Nonetheless, I now have high hopes that the potential is within my grasp to make real progress in achieving better image quality.  I am not convinced I have yet reached a turning point but I am well positioned to navigate the tasks required to get there, which are now more clearly understood and in my sights or should that be RDF – watch this space!

M31 Andromeda Galaxy

M31 DSS2 30 sec ISO800 170814crop

WO GT81 + unmodded Canon 700D & FF| 10 x 30 secs & ISO 800 | August 2014

Picture saved with settings embedded.

WO GT 81 + modded Canon 550D + FF | 9 x 120 secs @ ISO 1,600 | 19th September 2015

Picture saved with settings embedded.

WO GT81 + modded Canon 550D & FF & PHD guiding | 10 x 300 secs @ ISO 1,600 calibration | 8th September 2016

NGC 6905 Western Veil Nebula – The Witch’s Broom

NGC 6960multiplelevelsonecontrast FINAL(Medium)

Canon 700D | 20×90 sec + darks.bias/ flats @ ISO 800

Picture saved with settings embedded.

WO GT81 + modded Canon 550D + FF & PHD guiding | 5 x 300 secs @ ISO 1,600 & calibration | 8th September 2016

NGC 6888 Crescent Nebula

Picture saved with settings embedded.

WO GT81 + modded Canon 550D + FF | 19th October 2015

Picture saved with settings embedded.

WO GT81 modded Canon 550D + FF & guiding | 10 x 300 secs @ ISO 1,600 & calibration | 11th September 2016

NGC 6992 Eastern Veil & Bat Nebula

NGC 6995 Stacked1-22 (Large)

Eastern Veil Nebula – NGC 6992 (right) & NGC 6995 (left). WO GT81 + Canon 700D & FF | 29 x 120 secs + darks/bias?flats @ ISO 1,600

Picture saved with settings embedded.

Eastern Veil Nebula (NGC 6922 & 6995): WO GT81 & modded Canon 550D + FF & guiding | 10 x 300 sec @ ISO 1,600 + darks | 11th September 2016

 

 

Forbidden Fruit

sonof

Soon after embarking on my astrophotography adventure just over two years ago it became apparent that after getting the basics right – polar & star alignment, focus, image capture etc. – the Holy Grail of imaging is increased exposures times, thereby collecting more of those elusive photons that have travelled across the Universe.  The first step to achieving this goal is tracking, which since purchasing my AZ-EQ6 mount in 2015 I have been successfully improving over time, on a good day achieving 180-second exposures and from time-to-time resulting in some decent images.  However, the light from DSOs is often very feint and can require much longer times, which is easier said than done.

At the same time as acquiring the aforesaid mount and a William Optics GT81 telescope I also purchased a William Optics 50mm guide scope, with which I intended to start guiding and thus push exposures above my 3-minute barrier.  Despite these aspirations, through a combination of events and my unease about the apparent difficulty of guiding, the guide scope has remained unused – until now.  Having recently purchased a dedicated Starlight Express Lodestar X2 guide camera, I have finally been emboldened enough to give it a try.

sx2

Starlight Express Lodestar x2 Guide Camera can be used either via the mount’s ST4 port or via ASCOM and the computer for pulse guiding.

I initially struggled to set up the guide scope and get the guide camera working together.  In particular obtaining focus proved very difficult; like the GT81 the guide scope focus turns out to be achieved within a very short distance that is measured in fractions of millimetres, which in this case required the insertion of an extension tube.

img_20160902_173811432

Reminiscent of the Space Shuttle on its Boeing 747 transport plane! The William Optics 50mm guide scope + Lodestar X2 guide camera neatly mounted atop the GT81 imaging scope using the integral rings.

Thereafter the big challenge, which I had previously avoided, was to start using the very popular PDH guiding software; Push Here Dummy (PHD) is named tongue-in-cheek by its original creator Craig Stark and is an amazing but somewhat intimidating piece of software.

option1

 

The principle is simple – find a star within the FOV and use it as a fixed reference point from which to assess and then correct small tracking errors in order to achieve better tracking, which thereby maintains pinpoint accuracy and enables longer exposure times, thus avoiding trailing of the sky and the objects being imaged.  Its use is regarded as something of a dark art but I have finally grasped the nettle with some success.  After months of clouded skies followed by an almost fatal equipment failure (see here for more), a period of exceptionally good weather and clear skies since late August provided the ideal opportunity to get to grips with this challenge that has so far eluded me.

At first I used a couple of sessions to overcome some past problems and ensure that everything was stable and worked well for basic tracking and imaging, in particular:

  • Repair and improve the imaging camera’s AC/DC adapter lead;
  • Where possible improve all other leads and connections – once bitten …..!  In this respect I have significantly re-arranged and tidied up the many power, control and camera leads, which has included the addition of right-angle USB / mini-USB camera connectors that now makes plugging-in easier and produces less strain on the connections i.e. more secure.  Simple, cheap and something I should have undertaken long ago;
  • Revisit EQMOD-ASCOM in order to achieve more robust tracking – especially reviewing the star alignment procedures;
  • Fit the guide scope using the rings incorporated onto the GT81 OTA, subsequently re-balancing the equipment and improve the mount’s feet positioning.

At this point I spent a couple of nights just playing with the equipment and in particular EQMOD-ASCOM, so as to obtain the best possible alignment; having suffered an enforced absence from imaging I just wanted to have some fun again too.  At the end of this process, first using SynScan for polar alignment before switching to EQMOD-ASCOM + Cartes du Ciel for star alignment, I successfully produced a good 10-star alignment model which was then saved for future use.  The resulting images already showed some improvement but I still had to tackle PHD.  With unusually good weather I decided to leave the final set-up outside under cover, thus preserving the settings for a shot at the aforementioned task of guiding next time.  In the interim I then needed to read the operating instructions and watch numerous videos on the use of PHD.

img_20160911_213525309

EQMOD-ASCOM 10-point alignment model. With an obstructed view of the northern sky by my house, all points are inevitably located in the southern quadrants.

Like so much of amateur astronomy, I will forever be grateful for the time and effort given by others to help those like me pursue our hobby.  The material, videos and responses to my forum queries on guiding have as usual been nothing short of outstanding and very, very helpful.  It’s still been difficult to get going but without the help and support of others it would be a complete non-starter.  In this respect I’d like to pay credit to SGL and the Open PHD Guiding forums.

Armed with this knowledge I have since undertaken a few sessions using PHD2 with reasonable success, achieving exposure times of 5-minutes and more.  Changing conditions and different objects make it necessary to continually finesse guide settings throughout the night and between nights and it’s already obvious that there’s much more to learn.  Such adjustments are not always linear or empirical in nature and will often only come from gut feel (experience).

I have chosen to use ASCOM pulse guiding, though my equipment also has ST4-ports which I had initially intended to use due to its apparent simplicity.  I am unable to argue the pros and cons of each method but there seems to be an overwhelming preference for pulse.  What I do understand (I think) are the greater subtleties that can be obtained with the pulse guiding technique and in particular, the co-ordination it provides with ASCOM, thereby ensuring PHD and the mount communicate with each other to provide essential directional information as well as guiding.  I am still investigating the impact of various BRAIN settings but through trial-and-error have progressed since my first guiding session.

img_20160831_000920crop2-large

First Pass: early guiding results 30th August 2016

img_20160912_014945688crop-large

Getting better: most recent guiding results 12th September 2016

Calibration of PHD is frustratingly slow and it seems that even after successfully completing the RA-procedure can still fail during the subsequent DEC / backlash clearance.  After calibration use of the PHD Guide Assistant can then provide more help in achieving the best settings for the given set-up and conditions, though it is also very slow.  However, once completed PHD is fantastic and so far has run well during the night, even when changing objects.  Furthermore, I’ve also studied and experimented with the PHD Drift Align tool and am hopeful that by using this I may soon be able to both dispense with SynScan altogether and improve polar alignment, hitherto my imagining nemesis as I cannot see Polaris from my location – a very exciting prospect – what’s not to like?

Starting a sequence of experimentation I chose a familiar but hitherto difficult DSO object to image that should benefit from longer exposures.  Having by now reached late-summer / early autumn, there were a few old favourites around such as the Veil and North America nebulae but for these trials I decided to go for the low hanging fruit of M27 or Apple Core nebula AKA Dumbbell nebula.

m27-170814-dss

My previous image of M27 in August 2014!

With limited success I imaged this planetary nebula in my early days of astrophotography but with its 8.0’ x 5.6’ size and apparent magnitude of +7.5, I found it difficult to obtain good detail and colour.  However, even without guiding the improved set-up and alignment produced better results at 3-minutes and with +5-minute guided exposures the images immediately showed very noticeable improvement.

The images were taken on four different nights starting on 23rd August and finished on 8th September, during which time the sky was clear and the weather warm with very low humidity, though by the end seeing conditions had started to deteriorate due to the impact of the emerging 1st quarter Moon.  All images have been cropped to the same size of 700 x 500 pixels or 2% of the original FOV i.e. an object size of about 0.20%!  Given this very small size M27 really is at the limit of the GT81 telescope.

m27-comps-paintfile-cropped

Strictly speaking the images are not fully comparable as the aggregate exposure times are not equal but nonetheless I think the results demonstrate the positive impact of guiding. The final two images are guided but do show greater star distortion, particularly at 8-minutes.  I suspect this may be due to the period over which the mount was left outside and would probably have benefited from some alignment tweaking before imaging re-commenced – lesson learned; the severe cropping ratio has also magnified any problems that would probably be less obvious in a larger widefield image.  There’s obviously room for improvement but I’m very happy with these early results which I can hopefully now build on.

Picture saved with settings embedded.

M27 Apple Core Nebula – my first and favourite guided image | William Optics GT81 + 50mm guide scope & 10-point EQMOD-ASCOM star alignment model | modded Canon 550D + field flattener & Starlight Express Lodestar X2 guide camera | 3 x 300 secs @ ISO 1,600 & full calibration, 3.3% cropped image| 30th August 2016

Unfortunately there is some downside to the longer exposures obtained from Fairvale Observatory: potentially more aircraft tracks and cloud plus more extended imaging time is unavoidable but overall it is, as expected, a major leap forwards for my astrophotography.  There’s still much to learn and improve with the technique but for now I am delighted to say that after nearly two years I am at last successfully guiding  – would you Adam & Eve it?

Dark Matters

download

After some months I have just finished reading Walter Isaacson’s outstanding biography of Albert Einstein.  I don’t know how the author, as far as I know a scientific layperson and writer of the equally good Steve Jobs biography, is able to pull together Einstein’s thoughts and theories in such an engaging and comprehensible manner that provides both insight and understanding into his scientific thinking, life and personality.

Besides the implications his work already has for nuclear physics and astronomy, even in the 21st Century we are only just starting to understand and confirm concepts that were either predicted or implied by his work of uniquely pioneering theoretical physics in the early part of the last century – much of which is still difficult even to comprehend, let alone understand.  In the world of astronomy two of Einstein’s predictions have only recently been shown to actually exist, with very exciting implications for our understanding of the Cosmos: gravitational lensing and earlier this year, confirmation of the presence of gravitational waves – ripples in the fabric of space-time itself!

abell370_hubble_960

Einstein vindicated: In the constellation of Cetus, the galaxy cluster Abell 370 abounds with evidence of gravitational lensing – imaged here in 2009 by the Hubble Space Telescope

During his early work Einstein battled with 19th Century scientists who continued to believe in the presence of the so-called ‘aether’, as proposed by Isaac Newton in 1718 – an undefined substance that supposedly filled the void in space and was responsible for the transmission of electromagnetic and gravitational forces.  Subsequently Einstein’s Special Theory of Relativity was able to explain such effects without the presence of the aether but there remained problems that were finally borne out in 1924 by Edwin Hubble’s evidence that contrary to the prediction of Einstein’s work and previous astronomical theories, the Universe was in fact expanding.  However, though serious these observations did not prove to be the end for Einstein’s work, merely the beginning of even more incredible theories that have even greater and more profound implications for the Universe.

History_of_the_Universe.svg.png

As a geologist by training, my background is scientific and I continue to follow with interest related developments across a broad spectrum.  My perception, which I think is justified by facts, is that we are again experiencing something of a quantum change in our understanding of physics at the moment.  No ‘new Einstein’ has yet emerged, though Stephen Hawking perhaps comes close and there are many bright minds still struggling to understand what it all means – certainly we seem no closer to a unified theory.  At the ‘very small’ scale the increase in particle types since I last studied science in the 1970s is staggering, recently culminating in confirmation of the Higgs boson at the Large Hadron Collider (LHC) in Geneva; almost certainly there’s more to come from the LHC but I’ve already lost track (no pun intended) of what makes up matter.

330px-CMS_Higgs-event

In the meantime, ever since Hubble’s expanding Universe bombshell, the world of physics has struggled to provide an explanation of what’s happening, except to say that for expansion to happen 95% of the Universe must consist of stuff we don’t know about, that is arbitrarily (and misleadingly) called Dark Matter (27%) and Dark Energy (68%), which have theoretical properties of mass and energy that would explain why the Universe is expanding; I find this exciting and even amusing.

Ilc_9yr_moll4096

Our earliest view of the Universe – the Cosmic Microwave Background, formed some 380,000 years after Big Bang 13.8 billion years ago.

As I get older I look upon the world with increased wonder and ask all the same big questions as everyone else.  I still find science itself exciting as we continue to unlock nature’s wonders but have increasingly had a suspicion that despite the incredible discoveries made by mankind, we are really only scratching the surface of what’s going on.  The prospect that there is still so much we do not know also provides many possibilities for what is really happening; a consoling thought as I move towards old age!  I believe it’s humbling for science that they (we) only know what 5% of what the Universe is made of.  Notwithstanding, like Deep Thought’s answer to the question “what’s the meaning of life the Universe and everything?” in Hitchhiker’s Guide to the Galaxy (answer = 42), it will keep thousands of scientists, their computers and the media gainfully employed for many years to come.  In the meantime, perhaps I can already help them?

download (1)

Early on in my astroimaging odyssey I discovered an interest in Deep Sky Objects, in particular nebulae. I find their very nature beautiful, as the birthplace of new stars and matter itself their science is also fascinating – as Moby puts it We Are All Made of Stars. There are numerous types of nebulae of equally diverse origin, with a complex variety of delicate forms that can be both enthralling and beguiling.  Generally they are made of gases and dust that emit types of light that often cannot be properly seen with the naked eye and only captured by photographic methods using various sophisticated imaging techniques, such as modified cameras or narrow band filters; their very elusiveness is part of the attraction.  I have been fortunate to photograph a number of these features and never get tired of their science and beauty.  However, there are other types of nebulae that are quite different.

Whereas the ‘common’ nebula is fundamentally based on activity that results in the emission or reflection of light, their other ‘ relations’ are the result of a quite opposite process.  In this case so-called dark or absorption nebulae are clouds of dense interstellar dust that obscures or scatters light from nearby objects behind, such as stars or emission and reflection nebulae, resulting in large, unusually dark patches in the sky.  I’ve imaged a few of these features before, where in the case of Orion such a process has produced Barnard 33, better known as the Horsehead Nebula – a dark interstellar dust region in the shape of yes, a horse’s head.  Recently I set out to image another less famous but equally exciting dark nebula.

Other than resorting to solar astronomy, the period of summer sometimes seems like something of a barren period, further compounded by short nights and the absence of astronomical darkness.  Notwithstanding, look closely and there’s plenty happening and, if you’re lucky, it’s possible to work into the night enjoying the warmth of the season too; I’ve recently been able to stay out in a shorts and T-shirt until past 3.00 a.m. – compare that to January – apart from the comfort there’s also no sign of the astronomer’s enemy, dew.  This year my wife has grown and strategically placed two night flowering plants close to my equipment, which on warm evenings produce pleasant aromas that waft across Fairvale Observatory whilst I’m working.  What’s not to like?

IMG_20160823_212657779 (Medium)

Night Phlox (Zaluzianskya Capensis). Though quite this small plant produces a strong smell of violets at night.

IMG_20160823_212515224 (Medium)

Nicotiana Alata. This large plant produces a strong, fragrant smell.

Whilst there’s no Orion (though it has made an appearance in the east from at about 3.00 a.m. since late August) or Taurus (also rising shortly before Orion) with all their iconic features, instead the summer arm of the Milky Way passes across the sky from about 8.00 p.m. presenting numerous opportunities of its own in the early part of the night.

Aquila b142

This time my targets were Barnard 142 & 143, located just west of the star Tarazed in the Aquila Constellation.  Roughly equivalent to the full Moon in size distance and some 2,000 light years away, both are dark nebulae which viewed together against the dense background of stars in the Milky Way clearly make the shape of the letter E – shown first below in inverted colour.

Picture saved with settings embedded.

Previously I’ve been too busy looking for the more conventional DSOs but at some 30 arc minutes, the E Nebula – as it is known – is another excellent imaging target for the William Optics GT81 field-of-view.

B142_143 Stacked  080816L3CL.jpg

E Nebula, AKA Barnard 142-3 in the Aquila Constellation.  William Optics GT81 FD & modded Canon 550D + 0.80x Field Flattener | 15 x 180 sec @ ISO 1,600 | 26th August 2016

B142_143 Stacked  080816L3CLcrop.jpg

E Nebula, Barnard 142-3 Dark nebulae

It turns out there are many such dark nebulae, so I hope to be imaging others in the future. I wonder what Einstein would have made of these and moreover, the hypothesis of Dark Matter & Energy?  It seems that once again he may have foreseen such developments and their possible existence may ironically even be found to relate to the cosmological constant used in his original General Theory of Relativity.

The Eagle Has Landed

“It is never wise to let a piece of 
electronic equipment know that you are in a hurry” (Murphy’s Law)

Following months of unusually protracted cloud cover during the winter and a short, though productive imaging period that can be measured in weeks, I have been unable to carry out any astrophotography since early May, when for inexplicable reasons everything went pear-shaped!  The problem started on the 9th May and it’s taken me 3-months to solve!  This and other events have therefore resulted in a noticeable paucity of WTSM activity – sorry.

After an earlier successful dry-run with the equipment in preparation for Mercury’s solar transit, a few days later at the very moment the transit started when I switched on the camera, Cartes du Ciel and EQMOD-ASCOM froze and, despite my best efforts, could not be restarted i.e. no images.  With the next transits not due until 2019 and thereafter 2032, this was a missed opportunity at best but as subsequent efforts failed to rectify the problem I’ve reached moments of despair.

I have used the same equipment and software successfully for nearly two years, in particular assigning the same USB COM-ports to avoid potential conflicts; experience of others shows ASCOM can be particularly fickle with the assignment of a COM port.  After some discussion via the EQMOD Yahoo forum group there was consensus that the problem was probably a software conflict or driver issue.  Somehow this didn’t seem right to me given the background described but with no alternative ideas I reluctantly set out to clean up the laptop and update all relevant software and drivers: ASCOM, Cartes du Ciel, EOS Utility etc.  Unfortunately there was no improvement, so I checked and checked again, including all connections and wires but with no success.

I had only queried the problem with the EQMOD Yahoo group convinced that this was where the problem existed and these were after all the experts.  With by now the limited darkness of summertime  nights upon us, despair setting in and my daughter’s wedding to attend to, I put everything aside for a few weeks: (a) for practical reasons, and (b) in order to restore some enthusiasm – hopefully.  At this point, somewhat late in the day, I decided to post a query on Stargazers Lounge; can’t think why I didn’t try before but there you go – the experience and help on SGL has almost always been very helpful and positive.

Almost immediately ‘Smudgeball (AKA Neil) from Scotland responded with a similar experience that turned out to be a very small break in the DSLR mains adapter insulation.  On inspection I could find no such damage to my adapter but it was worth a try, though holiday travel then delayed acquiring a replacement for another few weeks.  Immediately on my return I obtained a new adapter which on testing indoors with the equipment produced a successful outcome – BINGO!  Soon after I was able to get outside once again and at last undertake some astrophotography, phew.  Despite my resolve and perseverance there have been times I’ve really felt like giving up completely and I am still getting over the frustration of these drawn out events.

acdc

AC/DC DSLR power adapter: How can something as basic as this cause so much disruption?

Whilst this was going on I did manage to carry out some planetary observing – with Jupiter, Mars and Saturn all around it was too good to miss.  For a while I have been aware that astrophotography has been distracting me from looking at the night sky itself; it seems strange but you get so tied-up with imaging and forget to look up – I hope to avoid this trap in the future.  Unfortunately the re-awakening of my observing interest only served to highlight the poor quality and range of some of my eyepieces.

After some research and another query on SGL I purchased an Explore Scientific 20mm 68o Maxvision eyepiece, which I thought would fit well in between my existing 32mm and 6mm eyepieces. The Maxvision is very well made but like many high-end eyepieces nowadays is quite bulky. However, the eyepiece has an unusual rubber twist-up eyecup, which though ingenious limits eye relief for those, such as myself, wearing spectacles and narrows the field-of-view.  As a result I exchanged the Maxvison eyepiece for Explore Scientific 5-element 20mm and 10mm 70o eyepieces, which provide much better eye relief and is therefore more suitable for my circumstances.  At this time I have not used either of these but as they are more conventional in design, with good access to the top lens for viewing, I am very hopeful they will do a good job.

IMG_2532 (Medium)

Explore Scientific 20mm eyepiece – good access to the wide angle top lens element provides good eye relief and full use of 70 degree FOV

I routinely watch second-hand equipment on the SGL and UK Astronomy Buy & Sell websites, which has resulted in some timely purchases in the past, including my modded Canon 550D camera and Vixen Polarie.  From experience I find it pays to know exactly what you might be looking for and what a good price might be, in order to act quickly if necessary.  There is great demand for popular items such as the Polarie which tend to go very quickly.  Buoyed by much positive online comments I was recently lucky to see and successfully acquire a Tele Vue 2.5x Powermate, just 3-minutes after it was posted!  I’ve only had brief use so far but it’s already obvious that this is an excellent piece of kit; being parfocal vignetting is eliminated and with great optics it’s noticeably a quantum improvement on a Barlow.

IMG_2534 (Medium)

Additions to the family: Explore Scientific 10mm & 20mm eyepieces and 2.5x Powermate

With the return of astronomical darkness on July 20th and the prospect of Fairvale Observatory able to function again, I have been keen to get back out.  Imaging targets are mixed at this time of the year but I’ve just managed to bag three exciting new objects.  The so-called Pillars of Creation are perhaps the iconic image of modern astronomy, inevitably captured best by the Hubble telescope.  These towering columns of illuminated cosmic dust are situated within M16 or Eagle Nebula, in the constellation of Serpens, which at this time of the year is located low in the southern sky, just above the ecliptic at about 25o – not an ideal but too tantalising not to give it a try.

M16stellcrop

At 7-arcseconds in size and +6.0 apparent magnitude, the Eagle is a decent target for the William Optics GT81.  Unfortunately as it’s been some time since the last session and my old nemesis of polar alignment wasn’t too good on this occasion, which combined with its low altitude and lack of guiding was always going to be a challenge.  Notwithstanding I manged to get a reasonable sequence of images that show the shape of the ‘bird’ and even the general nature of the Pillars at the centre of the nebula, though inevitably exposures were short and minor star trails are evident.

M16 Stacked 070816cropL2GX2SLpcrop copy

M16 The Eagle Nebula: William Optics GT81 & modded Canon 550D + FF | 15 x 180 sec @ ISO 1,600 + darks | 7th August 2016

M16 Stacked 070816cropL2GX2SLpcropinverse copytxt

After all the trauma of the past few months it was a satisfying result and later that night I was able to capture two more interesting objects, more of which another time – watch this space.   It’s fair to say that for now the eagle had in more than one way well and truly landed, though given the preceding difficulties and eventual solution it was more like Apollo 13 than 11!

apollo11apollo13

Summertime Blues

IMG_5435

This year the Summer Solstice falls on 20th June at 23.34 BST, meaning the Sun will have reached its furthest point north; as a result from 22nd of May to 19th July 2014 there is a state of permanent Astronomical Twilight AKA Nautical Darkness at Fairvale Observatory. This means there is a complete lack of Astronomical Darkness for imaging, which when combined with short nights poses various problems for astronomy in general.  Notwithstanding, there are benefits and other opportunities which are worth exploiting.

annual_darkness

Annual darkness at Fairvale Observatory 2016

To turn the problem around an obvious solution at this time is viewing and imaging the Sun.  However, following the initial success of testing my equipment in preparation for Mercury’s transit of the Sun on 9th May, the actual event proved disastrous for solar imaging.  I have subsequently re-checked the equipment and software set-up and the problem has continued but without any obvious reason.  Popular opinion on the EQMOD Forum is that it is a software issue – drivers, EQMOD, EOS Utilities – so when time allows over the summer I will reinstall and test everything, hopefully ready for the return of astronomical darkness on 20th July.  Murphy’s Law will likely mean it’s something else but for the moment this seems to be the only way forwards, or is it backwards?  Having just managed to get guiding to work, I had been looking forwards to a new imaging era but that’s astrophotography!

Although the nights are now short the temperatures have been pleasantly warm; after the long dark but cold nights of winter (and spring this year) it’s been a real pleasure to be outside in summer clothing and without the threat of condensation on the equipment.  Notwithstanding, ever present cloud and inevitably the Moon has continued to thwart my efforts until recently, as I have at last just managed a couple of very enjoyable evenings.

At the moment the three major planets of Jupiter, Mars and Saturn can all be seen at various times between 10.00 pm to nearly 3.00 am, when the early morning light then becomes evident. After putting on a great show during May, Jupiter still remains high in the sky just after sunset.  Mars and Saturn are at a much lower declination of between 10o   and 17o but provide very good views in the right seeing conditions, especially Mars which with an apparent dimension of 18.6o has recently looked excellent, even to the naked eye.

060616 Sky

With such opportunities I decided to try out the Skywatcher 150PL and the ZWO ASI120MC once again.  It is almost two years since I used this telescope, preferring instead the superior William Optics GT81 for viewing and imaging.  However, with a focal length of 1,200mm and 150mm aperture (f8) the Newtonian scope is better suited to planetary objects; this was also the first time I rigged the scope for use on the AZ-EQ6 GT mount, thus providing better control than the EQ3-2 I have previously used.

Sure enough the views of each planet were very good but also being unaccustomed to the ZWO webcam through lack of use, I failed to obtain any images!  Pity but the lesson learned is that I cannot just dabble with this equipment and need to dedicate more time in the future if I am to learn how to use properly again.  Nonetheless, it was fun re-acquainting myself with these planets.  As an unexpected bonus the ISS also flew right over Fairvale Observatory for over 7 minutes.  This time the station was noticeably brighter than previously observed, which I put down to Nautical Darkness and the relative position of the Sun that results, thus producing greater reflection and therefore better illumination of the ISS when viewed from the ground?

All-in-all after months of difficulties and inactivity it was a good night and at midnight I therefore decided to swap to the William Optics GT81 for some DSO imaging.  After setting-up the scope I looked up and, as if from nowhere, broken cloud had rolled in obscuring much of the sky and putting an end to any DSO imaging.  Oh well, I had had a good time before and was at least able to get to bed at a civilised time – one of the other drawbacks of summer astronomy.  As luck would have it the weather was also good on the following night, probably even better than before and this time I concentrated on bagging some DSO images as the planets again marched across the sky from east to west.

As a result of the aforementioned equipment and software problems I have resorted to the trusty SynScan handset again for alignment and mount control.  Impressive though EQMOD and all the other paraphernalia are, so far I have found it all to be somewhat fickle and from my personal experience often unreliable.  However, after last year’s enforced astronomy hiatus following my operation and the almost farcical lack of observing conditions over winter and now spring, I’ve become a little rusty with the set-up and as a result, on this occasion encountered my old nemesis – polar alignment – to be something of a problem once again.

Amongst the types of DSO objects, I find globular star clusters to be particularly intriguing; I had not even heard of such features until taking up astronomy in 2013.  Some 158 of these ancient star clusters are known to orbit around the main disc of the Milky Way.  At about 11bn to 13bn years old they are very old and despite what so-called experts might say, it seems to me their origin remains something of a mystery; it’s interesting that such clusters are also associated with other galaxies.

At this time of the year a number of globular and open clusters feature across the night sky and form excellent imaging targets.  First up at about 11.00pm was M5 and immediately I discovered the shortcomings of my polar alignment, further aggravated by the decision to try 4.00 minute exposures = big mistake; ironically prior test shots  turned about better!

Picture saved with settings embedded.

M5 globular cluster + excess trailing! WO GT81 Canon 700D + FF | 9 x 240 secs @ ISO 800 + darks | 6th June 2016

IMG_0026crop

M5 test shot: 10 sec @ ISO 6,400

IMG_0023crop

M5 test shot: 15 sec @ ISO 6,400

Following on from M5 shortly after midnight, M13 appears at a much higher altitude, thus helping to reduce the impact of star trails.  Furthermore, as I was by now fully aware of the polar alignment error, I reduced the exposure time from 4.00 to 2.00 minutes; it helped but nonetheless could not hide the impact on the resulting images.  Note to self: always ensure good polar alignment.  An EQMOD – ASCOM – CdC alignment model would be much better but until I can correct the aforesaid problem it’s down to SynScan and hopefully in the interim I can return to globular clusters once more during summer.

Picture saved with settings embedded.

M13 with less but still noticeable trails! | WO GT81 & Canon 700D + FF | 19 x 120 secs @ ISO 800 + darks | 7th June 2016

Before going to bed I couldn’t resist a few quick shots of an old summer favourite, M57 or the Ring Nebula, itself also very high above Fairvale Observatory by this time of night.  Considering the alignment problems the image wasn’t too bad, however, the first half of 2016 has really been a case of one step forwards, two back.  I hope the next 6-months will be more positive, they will inevitably be darker and colder.

Picture saved with settings embedded.

M57 Ring Nebula (left of centre) + Sulafat (left) & Sheliak (right) | WO GT81 & Canon 700D + FF | 13 x 120 secs @ ISO 800 | 7th June 2016

Picture saved with settings embedded.

M57 – Ring Nebula, cropped.

Nocturnal Safari

night eyes

Asterisms of the night sky have long been the basis for astronomy, navigation, astrology, myths, general stories and even religion.  Whilst over millennia their shapes inevitably change, on the scale of human life there is an element of permanence and certainty.  With so many stars it is not difficult to ‘join-the-dots’ in order to arrive at a recognisable shape, thereby making identification easier.  Simplest amongst these are the seasonal often geometric asterisms such as the Summer Triangle, Winter Hexagon and The Plough or Big Dipper.  However, it is the 88 constellations that dominate our definition and description of the night sky.

450px-Constellations_ecliptic_equirectangular_plot.svg

Computer based planetarium usually trace the relevant shapes and often the underlying historical figures from which they were originally derived – though frankly in some cases these can be quite spurious and even misleading.  Of the total constellations: 17 depict humans or mythological figures, 29 inanimate objects and a whopping 42 animals – the night sky might literally be described as something of a zoo!

Despite my cynicism the patterns can be very helpful when initially learning the night sky, as well as for navigating and descriptive purposes.  When starting out in astronomy I deliberately did not purchase a GoTo mount in order to first better master the geography of the night’s celestial sphere.  For this purpose I purchased a planisphere and to a degree (no pun intended) it did initially help but with so many stars, light pollution and the odd cloud it wasn’t always easy when it came to essential star identification and alignment.  I am sure I will forever benefit from the effort but this is 2016 and inevitably I have succumbed to using Google Sky  on my smartphone to identify or at least confirm a star’s identity.  Equally inevitable, I now use an AZ-EQ6 GoTo mount, which when linked to the Cartes du Ciel planetarium software is a quick and powerful combination for locating and tracking objects.

As previously discussed, this winter has been unusually cloudy but I recently managed a rare though decent imaging session in which I was able to capture night animals of a different sort.  Probably like most astronomers I find the mid-winter night sky to be the highlight of the year, making the aforementioned seeing problems all the more frustrating.  I have already imaged various parts of everyone’s favourite, the Orion constellation and so this time was looking for alternative objects in a similar region that would be suitable for the William Optics GT81.  Whilst I find many if not most of the star asterisms unconvincing, there’s no denying that some of the DSO shapes really do look like animals and this time I found two.

animal2

NGC 2174 or the Monkey Head Nebula is located within the Milky Way, between Orion’s club and Castor’s left foot.  An HII emission nebula, with an apparent magnitude of +6.8 and 40’ apparent dimension, it was a good target and a very convincing monkey’s head.  Closer inspection of the image shows another smaller HII nebula north above NGC 2174 called Sh2-247, that is not only connected to the monkey but they are both part of the even larger GEM OB-1 molecular cloud complex which covers a massive region of 570 x 770 light-years!

Picture saved with settings embedded.

NGC 2174 & Sh2-247 nebula above.  WO GT81 & modded Canon 550D + FF | 20 x 180 sec @ ISO 1,600 | 10th February 2016

Picture saved with settings embedded.

NGC 2174 The Monkey Head Nebula, cropped & inverted

In addition, situated between the constellations of Canis Major and Monoceros  is IC 2177 the Seagull Nebula, which is also within the Milky Way but ‘flying’ lower than the Monkey Head Nebula to the left (south-east) of the Orion.  More than 2.5o from wing to wing, a number of bright star clusters are associated with this emission nebula, notable of which is the ‘bird’s head’ designated NGC 2327;  IC 2177 is also known as the Parrot’s Head Nebula, which given the form of NGC 2327 I’m inclined to prefer.

Picture saved with settings embedded.

IC 2177 The Seagull Nebula. WO GT81 & modded Canon 550D + FF | 20 x 180 sec @ ISO 1,600 | 10th February 2016

I’ve previously imaged a number of other animal-like DSO objects: Jellyfish Nebula, Crab Nebula, Pelican Nebula and the famous Horsehead Nebula.  Unlike the constellations they generally but not always, really do resemble the form their names imply.  Now adding to this list the Monkey Head and Seagull (Parrot) Nebulae it sometimes seems like a safari rather than astronomy!

Sky Animalscrop

 

It’s all in the stars

Starry_Night_Over_the_Rhone

After 24-weeks I have just completed Imagining Other Earths, a Coursera MOOC presented by David Spergel, Charles A. Young Professor of Astronomy at Princeton University – soon to become Director of the new Computational Centre of Astrophysics, NY – and cannot speak too highly of the course.  In my quest to better understand what I am seeing and imaging, I have participated in five astronomy courses and this is by a country mile the best; how many country miles in a parsec I wonder?  There was very little not covered about astronomy in the course, including related geology and life itself but it was outstanding for three reasons:

  • Frequent use of easy-to-understand equations to explain and link various processes responsible for the Universe and everything in it;
  • It is very comprehensive, thorough and well produced, and…
  • David’s lecturing is just very good – easy to understand and well delivered.

For some while now the trend in my astrophotography has been increasingly directed towards seeing the big picture and by coincidence the course followed a similar scientific theme in order to Imagine Other Earths throughout the Universe; a metaphor for life itself and possibilities across the Universe.

download

The ultimate question starts at the beginning – where do we come from?  Moby and astrophysicists seem to have the answer: we are all made of stars.  How we get from that to here may be an even bigger question and like the philosophers in The Hitchhikers Guide to the Galaxy looking for the meaning of life (answer = 42!), should keep many astrophysicists gainfully employed for aeons.

inflation

In the meantime there is strong evidence that we do indeed come from stars and their evolution through the process of nucleosynthesis, which is responsible for all but a few man-made elements that we find on Earth.  Through the action of nuclear fusion a star burns its way through the periodic table, first from hydrogen to helium then carbon-oxygen-magnesium-silicon and eventually iron.  Thereafter the other, heavier elements require even more extreme conditions – heat & pressure – that can only be found in the late or final stage of a star’s life such as a Super Nova.

hr_fancy

When the Periodic Table was initially formulated in 1863 by Dimitri Mendeleev there were 53 elements, which through subsequent discovery have now grown to 118.  I find it wonderful and exciting that almost all of these can be attributed to stellar evolution, which can be viewed and imaged in the night sky.

Nucleosynthesis_periodic_table.svg

At this time of the year the Milky Way is a dominant feature passing across the winter night sky which provides numerous, sometimes spectacular objects that are favourable for imaging.  Located close to the western edge of the Milky Way in the constellation of Auriga about 1,500 light-years from Earth, is IC 405 or Flaming Star Nebula and nearby (visually) IC 410 or Tadpole Nebula, itself at 12,000 light-years distance.   Located across the central area between these objects is a star field, notable of which and actually within the IC 405 is the O-type blue variable star of AE Aurigae, that is responsible for illuminating the nebulae.

auriga

IC 405 is formed of two sections, consisting of an emission and reflection nebula. Radiation from the variable star AE Aurigea, that is located in the lower part of upper-east (left) lobe, excites the hydrogen gas of the nebula which then glows red, while carbon-rich dust also creates a blue reflection from the same star.

Picture saved with settings embedded.

IC 405 (right)-The Flaming Star Nebula inc AE Aurigae varibale star & IC 405-The Tadpole Nebula: WO GT81 & modded Canon 550D + FF | 15 x 180 sec @ ISO 1,600 & full calibration | 8th December 2015

Located within the nebula IC 410 and partly responsible for its illumination is an open cluster of massive young stars, NGC 1893.  Being just 4-million years old these bright star clusters are the site of new star formation and therefore are just starting their creation of new elements.  The so named ‘tadpoles’ are filaments of cool gas and dust about 10 light-years long.

IC 410Canotate (Large)

IC 410-The Tadpole Nebula: Illuminated from within by the NGC 1839 star cluster.  Image cropped and forced to highlight the two ‘tadpoles’, which can just be seen indicated in the green ellipses (‘tails’ upwards)

Each nebula is large, respectively 30’ x 20’ and 40’ x 30’, with an apparent magnitude of +6.0, which combined with the star AE Aurigae makes an excellent target for the William Optics GT81.  I find it thrilling to consider the processes taking place in these objects that I have captured in the photograph, which surely represents the ultimate Big Picture?

Good Vibrations

Ever since autumn undertaking astronomy has continued to be very difficult at Fairvale Observatory; except for some periods coincident with the full Moon, I can count on the fingers of one hand the times we’ve had clear dark skies – at this rate I’m going to need a new hobby!  As a result 8th December was the last time the observatory was in action – frustrating but what can I do?  Notwithstanding, on that occasion I was able to obtain decent images of three different objects, two of which were new for me.

2015_15_Sunshine_Anomaly_1981-20101

I live under the grey bit in the South East i.e. cloudy

Apart from persistent cloud, the winter has also been unusually wet and in general I yearn for better weather. In the absence of more desirable conditions I was at least able to image something that kind of reminds us of a better more pleasant climate, NGC 1499 or The California Nebula – so called because being like the shape state of California.

perseus

Located in the constellation of Perseus, within the Orion arm of the Milky Way some 1,500 light-years from Earth, NGC 1499 is a large emission nebula about 100 light-years long, or nearly 4o.  The HII nebula is ionized by the nearby but otherwise unrelated star of Xi Persei (Menkib) but despite its size it is difficult to view and can only be properly appreciated using long exposure imaging, preferably with an Hβ filter (486 Nm) or in my case a modded-DSLR camera and light pollution filter (450 Nm – 550 Nm & 650 – 750 Nm) worked quite well.

Picture saved with settings embedded.

NGC 1499 California Nebula – Xi Persei (Menkib @ top), North down: Wo GT81 & modded Canon 550D + FF | 16 x 180 secs @ ISO 1,600 & full calibration | 8th December 2016

It was a pleasure to finally image the California Nebula, which is an ideal object for the William Optics GT81.  However, being nearly 2-months since imaging NGC 1499 it is now only present during the early evening and will soon be gone from the sky altogether for another year, pointing the way towards the Spring Equinox in a few weeks and hopefully improved weather and astronomy conditions, in every sense leading to good vibrations!

A Wider Perspective

I like to think and operate at both ends of the spectrum: sometimes considering detail and its implications and often exquisite beauty, whilst on the other hand taking a wider view will often provide broader insight and answers – notwithstanding, I am usually drawn towards the latter.  There was no shortage of scope for such thoughts in my career as a geologist and now as my hobby in astronomy.  I have become fascinated with parts of the Universe and captivated by imaging them: galaxies, nebulae, star cluster etc. but the wider view is often even more astounding and perplexing.

you-are-here-2

My nascent astroimaging has already produced some rewarding photographs, which using the fast William Optics GT81 refractor has enabled me to obtain images of up to 3o FOV. In fact this became something of a theme last year, successfully imaging features such as the Sadr Region and as they say, one thing has led to another.  Wanting to image even wider views there’s mostly only one alternative, using a camera and lens.  I’ve tried this before, on a tripod and fixed to the ALT-AZ EQ6 mount but with mixed success.  Meanwhile, I came across excellent pictures taken using lightweight tracking mounts on a tripod and as a result the way forwards became obvious; after scanning the Classified advertisements online for a while I was fortunate to find and purchase a second-hand Vixen Polarie mount last September.

Probably my favourite object, which can rightly be considered the signature image of the winter night sky and is therefore around at the moment, is the constellation of Orion and especially its numerous and often exciting constituent parts: M42, Horsehead & Flame Nebulae etc.  After waiting for weeks for the clouds to clear, I briefly got a chance to image Orion using the Vixen Polarie early in November, whilst at the same time using the WO GT81 to obtain yet another picture of the irresistible Great Orion Nebula M42. 

Picture saved with settings embedded.

Orion’s Sword – including the wonderful Great Orion Nebula M42 et al : WO GT81 + modded Canon 550D & FF | 14 x 180 secs @ ISO 1,600 | 9th November 2015

The Vixen Polarie is a deceivingly simple and well-made solution to obtaining long exposure images of the wider night sky using a camera and lens.  As stability remains essential for the mount and camera to operate at their best, I also purchased a decent Manfrotto tripod and suitable ball heads to attach the Polarie.  After that it was simple, well not quite! Trying out the Polarie at the same time as using the GT81 and being first time out was a mistake.  I fumbled setting up the equipment and initially even forgot to turn on the tracking, leaving only a short time to grab a few images before the clouds rolled in once again!  Not surprisingly the results were mixed and I was left frustrated.  With continuing poor seeing conditions, it was to be a further month before I had an opportunity to properly use the Vixen Polarie again – this time with a new Sigma 10 – 20 mm ultra-wide angle lens I had just purchased.

Picture saved with settings embedded.

Vixen Polarie & Canon 700D + 18 – 55mm lens | 19 x 60 secs @ ISO 800 | 9th November 2015

Having by now spent more time looking at the manual (we all get there, in the end) and concentrating on imaging using only the Polarie, this time I was able to achieve a good set-up and remembered the correct sequence of operation.  As the mount sits high on the tripod I am just about able to see Polaris in a small gap between the roof of my garage and house, something hitherto impossible when using the lower positioned AZ-EQ6 mount.  As a result I am able to achieve a reasonably good visual polar alignment, though a polar scope made specifically for the Vixen Polarie would improve this further; probably something for another time?  Nevertheless, such an alignment at Fairvale Observatory is a first and was a major breakthrough that has already permitted exposures of 4 minutes and could probably go to 5 to 6 minutes or more.

IMG_2135 (Large)

The high position of the Vixen Polarie on the tripod provides an otherwise elusive view of Polaris between the garage / utility room and the main house for polar alignment, at last! Alignment of the mount is carried out by viewing through the hole in the top right of the Polarie – better alignment can be achieved by using a polar scope which fits through the middle of the Polarie mount.

Once polar aligned, fixed on the front of the Vixen Polarie the camera then rotates to follow the celestial sphere and chosen object in order to achieve a sharp image with long exposures.  For this purpose there are 4 tracking rates: sidereal, half sidereal, lunar and solar.  With no interesting foreground here I concentrated on the sky by using the sidereal rate; for more scenic shots with the landscape incorporated, using half-sidereal provides a compromise in order to achieve a non-blurred image of the sky and landscape, though this method is inevitably limited to shorter exposures than sidereal.

IMG_2124 (Large)

Vixen Polarie mount on Manfrotto tripod – a lightweight, portable tracking method for widefield astroimaging

IMG_2125 (Large)

Vixen Polarie – close-up showing x2 ball head fittings

IMG_2131 (Large)

Vixen Polarie – tracking speed settings

VP Dial

IMG_2136 (Large)

Vixen Polarie with DSLR attached & ultra-wide lens

I have adapted a somewhat basic red dot finder to fit on top of the DSLR camera using the hot shoe, which was immediately helpful to accurately locate the desired target area.  However, as previously experienced, once again achieving focus proved quite difficult, basically requiring just trial and error; I intend to look into a more efficient method but in the absence of a Bahtinov mask this is likely to be the best technique for now.  A laptop can be used for image capture but maintaining the themes of portability and simplicity, I successfully used an intervalometer to control exposures.

Whilst initially my target was the Orion constellation, I’ve long held the ambition to image Barnard’s Loop, a much larger and elusive feature surrounding the constellation and more difficult to photograph.  I had tried this before last January with limited success but ever since acquiring the Vixen Polarie this has been my No1 imaging goal.

Orion Constellation 220115 Stacked1L2C3GX (Large)

The Orion Constellation & Barnard’s Loop (up / north is left) : AZ-EQ6 Mount + Canon 550D & 200mm Telephoto | 180 secs @ ISO 1,600 & calibration | 22nd January 2015

Unable to see with the naked eye, only using long exposure photography unveils the majesty of Barnard’s Loop, an emission nebula to the left (east) of the Orion constellation. Shaped as a large-C, the loop completely encompasses the eastern side of the constellation and is thought to be a recent supernova front moving out from Orion and illuminated by stars from within the nebula, as well as part of the Orion Molecular Cloud Complex.  Discovered and named after astrophotographer E. E. Barnard in 1895, at some 14o or 300 million light-years across Barnard’s Loop is enormous; however, the entire Molecular Cloud is about 30o in size!

pleyades31_02

The Orion constellation was originally conceived in Greek mythology as the Hunter, pursuing Taurus the Bull to the west, with the stars tracing out a shape of a hunter holding a shield and club in each hand, a belt around the waste with a sword attached.  What they could not have known at the time is that he also has a head, in the form of the Lamda Orionis Nebula (Sh2-264), located centrally and above Betelgeuse and Bellatrix.

Picture saved with settings embedded.

Barnard’s Loop & Lamda Orionis Nebula : Vixen Polarie & modded Canon 550D + Sigma UWA @ 20mm | 11 x 240 secs @ ISO 1,600 + darks | 7th January 2016

I was able to image Barnard’s Loop on 7th and 14th January; at ISO 1,600 the first images showed the Loop but certainly left room for improvement, as a result I shot the subsequent images at ISO 800 and obtained a noticeably better outcome – though I had to push post processing to reveal the features.  The Loop and head are clearly evident but I’ve been intrigued to see other objects also revealed, albeit without the detail obtained with prime focus imaging using the telescope: Great Orion Nebula, Horses Head & Flame Nebulae and surprisingly on the left (east) of the Loop the Rosette Nebula.  Looking at other’s images of Barnard’s Loop it is clear that I will need to take significantly more subs to properly reveal the full beauty of this wonderful and very large feature – dark skies would be nice too – but for the moment I am pleased with my first outing using the Vixen Polarie, which holds great promise for capturing a wider perspective of the Universe.

Picture saved with settings embedded.

Barnard’s Loop & Lamda Orionis Nebula + Rosette Nebula on far left : Vixen Polarie & modded Canon 550D + Sigma UWA lens @ 20mm | 14 x 240 secs @ ISO 800 | 14th January 2016

Reflections – 2015

Launched in August 2014, 2015 is the first full year of Watch This Space (Man) and despite some personal set-backs it’s been an interesting year astronomically, with much to write about.  Whilst I have made progress with my imaging, it was not what I would have wished for but nonetheless I have been pleased with the outcome.  Continuing on from last year, Reflections is a recap and thoughts on all that happened to me astronomically in 2015 and looks forward to the coming year.

Although this website is just intended as my record of A personal discovery of the Universe through astronomy and astrophotography, it has been pleasing to see that over the year the site has attracted 1,310 visitors from 77 countries around the world and over 2,700 views; you are all most welcome.  This was not the intention of the blog but I am humbled by the interest and would be very pleased to hear from anyone who would like to get in touch with queries, comments or just to say hello – contact details are in the About section.

Reflections 2015

JANUARY TO MARCH

The first quarter turned out to be my most active and successful period of the year for reasons that will become apparent later.  Strictly speaking my image of the Rosette Nebula posted on 5th January was taken on 29th December 2014 but what an image to start the year with, clearly I was doing something right by now.  Notwithstanding, from looking at pictures of the same object taken by other more accomplished photographers, it was evident that something was missing – red!  This was an easy to problem to solve and I immediately set out on a quest to find a suitably modified camera with the IR filter removed.  Soon thereafter I was lucky to find an excellent second hand modded Canon EOS 550D, which has now become my main imaging camera of choice and with all that extra red Ha-light has led to a quantum improvement of many images since.  Such cameras are very popular so I felt lucky to have secured this one.

Orion's Sword: M42 The Great Orion Nebula, Running Man Nebula & NGC 1981 Star Cluster WO GT81 + modded Canon 550D & FF | 10 x 180 secs @ ISO 800 & darks calibration | 8th February 2015

Orion’s Sword: M42 The Great Orion Nebula, Running Man Nebula & NGC 1981 Star Cluster
WO GT81 + modded Canon 550D & FF | 10 x 180 secs @ ISO 800 & darks calibration | 8th February 2015.  Modification of the camera by removing the IR filter increased red Ha-light.

EQMOD / ASCOM is a popular free software project developed by amateurs that, amongst other things, provides computer and planetarium linked control of the mount; with other compatible linked programmes such as APT (Astrophotography Tool) and PHD (Push Here Dummy) control can be extended to cameras and for autoguiding.  At the start of the year I successfully started using Carte du Ciel planetarium linked with EQMOD for computer controlled alignment and mount control, which as expected was very useful – particularly when it got really cold and I was able to take the equipment indoors and operate the equipment remotely.  However, later in the year I have encountered connection problems which are, as yet, not fully resolved.

Whilst EQMOD is an excellent project which provides first class mount control when working, it requires additional faffing about and problems on a different level of scale, which with limited imaging conditions in the UK and having to set up outside from scratch each time is a pain.  For this reason and others I have not yet moved to autoguiding, which I know will be highly beneficial to imaging but for the moment has proved to be a step too far for me.  Such is the fickle nature of all this that I’m now considering other ways of achieving the same end, perhaps with professional software control and a stand-alone guider, such as the Lacerta M-GEN – of course a dedicated observatory would help a lot but seems unlikely at the moment!

I have previously found the early winter sky of Orion, Taurus, Pegasus and Monoceros very productive with beautiful imaging objects such as M42 and the Horsehead Nebula.  However, this year looking more closely at the late-winter / early spring skies turned out to be just as exciting, with a veritable playground of galaxies to choose from during February and March.  Notwithstanding, the highlight during the winter was successfully imaging Comet Lovejoy, a first for me that required changes to  normal DSO and planetary imaging techniques as this ephemeral object was speeding across the night sky at over 70,000 mph – post processing also turned out to be quite different.

C/2014 Q2 Comet Lovejoy WO GT81 + Canon 550D (modded) & FF | 40 x 20secs @ ISO1,600 + darks | 16th January 2014

C/2014 Q2 Comet Lovejoy
WO GT81 + Canon 550D (modded) & FF | 40 x 20secs @ ISO1,600 + darks | 16th January 2014

 

No Date Object* Name
1 16/01/15 C/2014 Q2 Comet Lovejoy
2 16/01/15 C/2014 Q2 Comet Lovejoy
3 16/01/15 NGC 2244 Rosette Nebula
4 22/01/15 M42 etc Orion Nebula
5 22/01/15 M45 Pleiades
6 22/01/15 Comet Lovejoy
7 22/01/15 Comet Lovejoy
8 22/01/15 Banard’s Loop
9 22/01/15 Banard’s Loop
10 22/01/15 Orion Constellation
11 24/01/15 NGC 1909 Witch Head Nebula
12 24/01/15 NGC 2392 Eskimo Nebula
13 24/01/15 M44 Beehive Cluster
14 24/01/15 IC-443 Jellyfish Nebula
15 08/02/15 M42 Gt Orion Nebula etc
16 08/02/15 Barnard 33 Horsehead Nebula etc
17 21/02/15 M65 Leo Triplet (Galaxies)
18 21/02/15 M105 M96 Group (Galaxies)
19 24/02/15 Venus & Mars
20 25/03/15 NGC 2903 Spiral galaxy – Leo
21 25/03/15 NGC 3842 Galaxy cluster: Leo
22 25/03/15 M 88 Spiral galaxy: Virgo cluster
23 25/03/15 M100 Spiral galaxy: Virgo cluster
24 26/03/15 NGC 4438 Markarian’s Chain
25 26/03/15 M104 Sombrero
26 26/03/15 M53 Globular cluster

 

*Record of quarterly photographic images in 2015, excluding other widefield pictures

APRIL TO JUNE

Things took a turn for the worse in April when I went into hospital for a knee replacement operation.  All went well but it is a major operation and recovery has been slow and often painful, thus prohibiting any real astronomy until September.  It did however provide the time and opportunity to read about astronomy and pursue some MOOC astronomy courses.

After a period of convalescence, I did manage to obtain some widefield camera shots of the planets, the ISS and simple night sky images in the summer.  Whilst not as satisfying as prime focus photography, it was interesting and kept me sane during this otherwise difficult time.

1st July 2015. Bingo = conjunction; though one day later Jupiter has now moved to the right of Venus.

1st July 2015. Conjunction of Jupiter to the right of Venus.

No Date Object Name
27 11/04/15 NGC 4438 Markarian’s Chain
28 11/04/15 NGC 4565 Spiral galaxy-side

 

JUNE TO SEPTEMBER

This period was more of the same until on 19th September, when at last I managed to set-up Fairvale Observatory for the first time since March, what a relief.  As a bonus I was particularly chuffed to achieve a good image of the Andromeda Galaxy but the highlight of this period and the year was the lunar eclipse at the end of the month on 28th September.

For once everything was perfect: a clear sky all night with a perfect view of the eclipse from start to finish.  I stayed up all night and would have to say it was one of the best, if not the best event I have so far experienced since taking up astronomy; apart from being an outstanding imaging opportunity, the ambiance throughout the eclipse was spellbinding.  I was therefore very pleased to obtain an excellent set of images of the entire eclipse, mainly using a prime focus camera set-up with the WO GT81 telescope but also with an alternative  camera and telephoto lens on a tripod.  The memory of that night will stay with me for a long while and, in part, helped to make up for the lost time since my operation in April.

Eclipse Animation 28th September 2015

Eclipse Animation 28th September 2015

No Date Object Name
29 19/09/15 IC 5070 Pelican Nebula
30 19/09/15 NGC 6979 Pickering inc Veil Nebula
31 19/09/15 M15 Globular Cluster
32 19/09/15 M31 Andromeda
33 28/09/15 Lunar Eclipse Entry @ 1 sec intervals
  28/09/15 Lunar Eclipse Totality
  28/09/15 Lunar Eclipse Entry @ 1 sec intervals
34 28/09/15 Lunar Eclipse Exit – camera + tripod
35 30/09/15 IC 1318 Sadr Region (+NGC 6910)
36 30/09/15 IC 1318 Sadr Region – Pt2

 

OCTOBER TO DECEMBER

The final quarter of the year has been very frustrating due to the almost complete absence of suitable imaging conditions, mainly due to cloud cover but even when there was a few clear nights it was of course a full Moon – you can’t win!  I was particularly unhappy as this time marks the arrival of the constellation Orion and all its wonderful imaging opportunities, for which I had new plans.

Given the short focal length of the William Optics GT81 and relatively small aperture, used with a APS-C cropped sensor DSLR camera the resulting field-of-view is a quite large and, where possible, this year I’ve therefore concentrated on objects of 2.5o to 3.0o apparent dimensions.  Together with the modded camera this has resulted in some exciting new images of old and new objects.

However, large as the field-of-view is with this set-up, I have become increasingly aware of the simply enormous scale of some nebulous features such as Barnard’s Loop.  As a result I have become more interested in widefield imaging using just a camera and tripod.  Like prime focus imaging, widefield imaging will also benefit from achieving longer exposures through the use of tracking.  Early in this period I was fortunate to purchase a Vixen Polarie lightweight tracking mount for this purpose, but due to the aforementioned conditions I have unfortunately been unable to use it very much.  In fact it’s fair to say that other than some brief experimentation, it’s hardly been used at all so far.  Notwithstanding, I can see the potential and have high hopes for future imaging opportunities when the clouds part and the Moon is absent.

The year finished with a couple of other purchases that I hope will assist with imaging in 2016:

  • A new laptop – running Windows 10 with a core i7 Intel chip, 2 TB hard drive, 16 GB RAM, dedicated AMD graphics card and an HD 17.3” screen, which I hope will help improve post processing.  Running my preferred Windows 7 operating system, I will continue to use the smaller 13” i5 chip laptop for mount and camera control.
  • Ultra-Wide Angle lens – the truth is I’ve recently acquired this wonderful Sigma 10 – 22mm  f3.5 lens for a trip to the Grand Canyon in April, however, I will of course also be using it with the Vixen Polarie when the skies clear.
No Date Object Name
37 09/10/15 NGC 6888 Crescent Nebula
38 09/10/15 M 74 Spiral galaxy (near Pegasus)
39 09/10/15 NGC 7814 Little Sombrero
40 09/10/15 NGC 7479 Barred spiral galaxy
41 09/10/15 M 31 Andromeda galaxy
42 08/12/15 NGC 1499 California Nebula
43 08/12/15 IC 405 Flaming Star Nebula
44 08/12/15 NGC 2264 Cone Nebula
45 09/12/15 M42 Great Orion Nebula etc
46 08/12/15 Orion Constellation

 

Favourite Images

Despite the lack of activity this year I have been fortunate to obtain some good images and I can only hope 2016 will be just as rewarding.  Acting as judge and jury, my personal favourites in no particular order are:

NGC 2024 Flame Nebula & Horsehead Nebula WO GT81 + modded Canon 550D & FF | 10 x 180 secs @ ISO 800 & darks calibration | 8th February 2015

NGC 2024 Flame Nebula & Horsehead Nebula
WO GT81 + modded Canon 550D & FF | 10 x 180 secs @ ISO 800 & darks calibration | 8th February 2015

 

Eclipse: Inward sequence from umbral contact to totality WO GT81 + Canon 700D + FF | 1/500 to 1/3 sec @ ISO 100 | 18th September 2015

Eclipse: Inward sequence from umbral contact to totality
WO GT81 + Canon 700D + FF | 1/500 to 1/3 sec @ ISO 100 | 18th September 2015

 

M31 Andromeda Galaxy WO GT 81 + modded Canon 550D + FF | 9 x 120 secs @ ISO 1,600 | 19th September 2015

M31 Andromeda Galaxy
WO GT 81 + modded Canon 550D + FF | 9 x 120 secs @ ISO 1,600 | 19th September 2015

 

??????????????

Goals for 2016

After the year that’s just finished I am reluctant to set out goals for 2016 but here goes:

  • Increase imaging exposure times: This is a euphemism for (a) improving equipment set-up and alignment, and (b) start autoguiding. As previously outlined, I have been struggling with both of these issues but one way or another I have to overcome the problems in order to obtain exposure times of at least 5-minutes and hopefully longer;
  • Improve processing: I was pleased to get to grips with Photoshop in 2015, albeit using a very old version, which together with other minor improvements to processing has added to the quality of the final images.  However, I know that even now there is more to be teased out of the existing imaging data for which I am already considering new software;
  • Start widefield imaging: First I just need clear skies in order to get out and start using the Vixen Polarie tracking mount from Fairvale Observatory, with the initial objective of imaging Barnard’s Loop, which has hitherto proved elusive to my current set-up.  However, one of the attractions of the Polarie-DSLR-Tripod combination is its portability, which I’d like to put to good use in 2016 by visiting dark sky areas in the UK.

There are other possible developments which at the moment seem unlikely to eventuate but you never know: a larger probably SCT telescope, a cooled CCD camera, and / or a permanent observatory (well I can dream can’t I?).

 

So all things considered 2015 was a good but not great year.  As a fundamental and important development I had really hoped to start autoguiding and thus increase exposure times but it was not to be.  Certainly the loss of astronomy time between April and September was a major set-back in many different ways.  Notwithstanding, during the remaining times available when I did manage to get outside I believe I achieved some of my best images to date and discovered many new and exciting objects in the night sky, which can’t be bad.  In particular, I am sure the lunar eclipse in September will remain a highlight of my astronomy experiences for many years to come.

Harvest Moon at Totality WO + Canon 700D + FF | 1/3rd Sec @ ISO 400 | 28th September 2015

Harvest Moon at Totality
WO + Canon 700D + FF | 1/3rd Sec @ ISO 400 | 28th September 2015

 

I’m now looking forwards to 12-months of uninterrupted astronomy, clear skies and plenty to report in the WTSM blog at the end of 2016!

Watch this space!