2025 The Year In Pictures

The year 2025 was like no other.  Starting with a knee replacement operation in January, shortly after we finally found a new house in March and moved to the lovely dark skies of Somerset at the end of June.  Unfortunately, the ensuing turmoil left only a limited time for astronomy.  Notwithstanding, I was able to supplement images from Redhill and our new home in Wookey, with some excellent data from Texas, USA and Chile to produce, what I hope you will agree, is an exciting 2026 calendar. 

For other pictures and information, go to my website https://watchthisspaceman.com/ or a video of the calendar can be found here on YouTube https://www.youtube.com/watch?v=gn3ls_s71lQ   and is best accessed on a PC or smart TV screen. Background music this year is Massive Attack’s track Atlas Air.

 COVERNIGHT SKY MONTAGE AT CASTLE FARM OBSERVATORY:

All these images (at the top of the page) were taken at various times from the same location at our house in Wookey, Somerset.  Clockwise from bottom left: (1) Nightscape of a small coppice looking south (2) Double Cluster – a pair of open star clusters in the Perseus constellation (3) Star trails (4) Sunset looking west. 

JANUARYTHE GREAT ORION NEBULA, M42 (1)
 
The Orion Nebula is a gigantic cosmic cloud of interstellar dust and gas, which is the basis for the birth of numerous new stars or a “star nursery”.  Being the brightest nebula in the northern hemisphere and just over 1,300 light-years distance from Earth, it can be seen with the naked eye on a clear night.
FEBRUARYFLAMING STAR NEBULA, IC405 (1)
 
This nebula is illuminated by a powerfully bright blue variable star, AE Aurigae. The object’s epithet comes from the brightly lit ripples of gas and dust at the top of the image, illuminated by AE Aurigae and glowing hydrogen gas. This “runaway star” was ejected by a collision two million years ago from the Triangulum region of The Great Orion Nebula.
MARCHCRAB NEBULA, M1 (3)
 
This small but beautiful supernova Remnant (SNR) was the result of the explosion of the star CM Tau just over 970 years ago.  Located at the centre of the nebula, the remaining Crab Pulsar neutron star spins at the rate of 30 times per second.        
 
APRILPINWHEEL GALAXY, M101 (3)
 
At nearly twice the size of the Milky Way and containing at least an estimated trillion stars, M101 is the second largest galaxy of the Messier catalogue and certainly one of the highlights of the spring galaxy season. 
MAY SCULPTOR GALAXY, NGC 253 (3)
 
One of the advantages of obtaining data from Texas, USA, is that it enables views of objects in the Southern Hemisphere that are impossible from the UK.  Also known as the Silver Dollar, it is one of the brightest galaxies in the night sky, which results from very high rates of star formation that are fed by the abundance of thick dust lanes.
 
JUNENEEDLE GALAXY, NGC 4546 (3)
 
Seen edge-on from Earth, the Needle Galaxy is thought to be a barred spiral galaxy, some 33% larger than the Milky Way. It has at least two satellite galaxies and 240 globular clusters. Seen through a telescope the Needle Galaxy appears like a thin streak drawn across the dark night sky but look closer and its detailed magnificence is revealed.

JULYWIZARD NEBULA, NGC 7380 (2)
 
Formed only a few million years ago, the gases of this young emission nebula glow due to intense radiation from hot, massive stars within. Interwoven within this glowing gas are dark, dense regions of dust that sculpt the nebula’s dramatic and somewhat mystical appearance, in this case a wizard – which marks my first image from Somerset.
 
AUGUSTLOBSTER CLAW & BUBBLE NEBULAE, SH2-157 & NGC 7635 (2)

Located in the Perseus Arm of the Milky Way, the Lobster consists of ionized hydrogen gas energized by ultraviolet radiation from nearby hot, young stars. The nebula’s distinctive claw-like shape arises from intricate filaments of glowing gas and dark dust. Nearby the Bubble Nebula owes its distinctive looks to a single, massive star, which emits fierce stellar winds that sweep up the surrounding gas into a nearly perfect, glowing shell.

SEPTEMBERMILKY WAY (2)
 
The night sky in Somerset is three times darker than Redhill, providing significantly better astronomy views.  In this case a spectacular image of the Milky Way’s galactic centre. 

OCTOBERTHE CYGNUS WALL (2)
 
The Wall is a prominent ridge located within the much larger North America Nebula in the Cygnus constellation. It is an active star-forming region, about 20 light-years long, composed of gas and dust that glows from the energy of young stars.
  
NOVEMBERGREAT BARRED GALAXY, NGC 1365 (4)

A double-barred spiral galaxy located 56-million light-years away, spans over 200,000 light-years across, twice the Milky Way. The most distinctive feature is its massive central bar, which plays a crucial role in channelling gas and dust into the galactic core. As a Seyfert galaxy the nucleus is extremely bright due to energetic processes around its black hole. 
 
DECEMBERCORONA AUSTRALIS, NGC 6729 (4)

This spectacular image is a combined reflection and emission nebula, set within the Australis Molecular Cloud. This wonderful, hazy looking nebula unusually exhibits both variable brightness and morphology over time.

 Image Data Source: (1)Redhill, Surrey (2)Castle Farm, Somerset (3)USA (4)Chile               
HAPPY NEW YEAR + CLEAR SKIES FOR 2026

Icelandic Aurora

It’s just over 6-years since my last arctic adventure, which was a trip along the Norwegian coast by ship from Bergen to Kirkenes and back, stopping along the way for deliveries and pick-ups at 30-ports.  On that occasion we had good views of the Aurora Borealis whilst at sea somewhere north of the Arctic Circle and with some difficulty, I was eventually able to obtain some images (see below). Standing outside on ther deck at +70o North latitude in February was incredibly cold, making camera operation difficult, whilst the ship’s movement from side-to-side and up-and-down was hardly conducive to photography of the night sky!

This time, I’m just back from circumnavigating the island of Iceland by car from mid to late-March, which is described more fully on my other website Round The Bend here.  It was timed to avoid the worst of winter conditions and, with darkness quickly disappearing as Spring / Summer beckoned, maybe still get a chance to see and image the Northern Lights again – this time on terra firma.  Despite such planning, severe snow, ice and very strong winds were common for much of the time but, when it was clear the scenery was spectacular and, on a couple of evenings later in the trip, the Aurora Borealis put on a great show.

Situated just below the Arctic Circle, mostly between 64o and 66o latitude, Iceland is well known both for its geology and sightings of the Aurora Borealis or Northern Lights.  As a geologist, I travelled to Iceland primarily to view the rocks and though it was getting late in the season, I was also keen to see the Aurora again if possible.  Given the days of bad weather it was therefore fortunate to have clear skies and good views of the Northern Lights on two separate evenings whilst on the south coast, first at Gerdi near Jökulsárlόn and later just south of Kirkjubaejarkklaustur.

Despite my previous experience, each aurora is different and on this occasion I found using a Canon 700D DSLR mounted on a Gorilla Pod, using a Sigma wide-angle lens set at a focal length of 10mm f3.5 + ISO 3,200 and 10 second exposures generally produced a good image.  It seemed that we were on the southern edge of the aurora on the first night at Gerdi (see top of the page), which was therefore weaker but exhibited a striking purple colour (helium).  The following night the aurora was much stronger, this time mostly green (oxygen) with red and purple fringing (nitrogen & helium) and generally much more active, resulting in some great views with the naked eye and even better images (see below).

Arctic Antics

img_8084-large

The globe pictured above on the island of Vikingen marks the location of the Arctic Circle off the western Norwegian coast.  However, surprisingly the position of the Arctic Circle is not fixed – as of 28 February 2017 it was 66°33′46.6″ north of the Equator but changes depending on the Earth’s axial tilt, which itself varies within 2° over a 40,000-year period due to differing tidal forces that occur as the Moon’s  orbit changes around Earth.  The region north of the Arctic Circle is famous for the midnight sun in the summer and its corresponding 24-hour darkness during the winter months, with major implications for life itself, as well as contrasting scenery and photographic conditions unique to this hostile region.

450px-arctic_circle-svg

During the last two weeks of February, when the return of limited daylight has just begun to mark the end of winter, I travelled by ship along the entire western and northern coast of Norway close to the Russian border, spending much of the time within the Arctic Circle.  The area is famous for its beautiful scenery, in particular the fjords which typify the coastline and for time immemorial have posed a significant challenge to all seafarers passing this way.

Our ship, the Richard With, was named after the Norwegian captain who in 1893 pioneered this difficult sea passage which we took from Bergen to Kirkenes and back.  Today a fleet of 12 ships are operated by the original Norwegian company Hurtigruten on a daily basis providing ferry transport for goods, vehicles and personnel, as well as a base for tourists seeking a view of the Northern Lights – in all the ship stops at over 30 ports in each direction.

kb_l4_map_desktop_us

Apart from the scenery, during the winter months the area north of the Arctic Circle is probably best known for the occurrence of the Aurora Borealis or Northern Lights (Norwegian – Nord Lys).  A view of this feature is treasured by all who see them but for astrophotographers it will be one of their ‘must do’ images to acquire.  The Aurora is caused by a solar wind originating from the Sun that consists of charged particles, which when drawn downwards at the Earth’s poles by the planet’s magnetosphere ‘excites’ atmospheric atoms which produce different coloured lights depending on the type of gas which is excited by the charged particles; a similar feature occurs around the South Pole called the Aurora Australis and is also now known to occur on Saturn and Jupiter.  The lights are mostly green in colour (ʎ 557.7 nm), sometimes red (ʎ 630 nm) or blue (428 ʎ nm) and less commonly pink, ultraviolet or yellow, depending on the altitude and type of excited gas – which is mostly either oxygen or nitrogen.  The resulting aurora takes the form of rapidly moving clouds or often curtains of light that dart across the night sky, constantly changing shape under the influence of the Earth’s magnetic field and does not disappoint when seen.

The Northern Lights are best imaged with a standard DSLR camera on a sturdy tripod, using a wide angle lens at full aperture, set at between ISO 800 to 1,600 and exposures of about 8 secs to 25 secs, depending on the brightness and quality of the light and the speed of movement of the aurora; focus and all other control needs to be operated manually for best results.  On land a tracking mount, such as a Vixen Polarie, could be used to improve sharpness but on a moving ship set-up and technique is a more difficult.

In this case exposure needs to be carefully balanced in order to account for the ships movement – forwards + up-and-down on the water – and the quality of the aurora light.  As exposures will always need to be greater than a few seconds, star trails are unavoidable and have to be dealt with in post processing as best as possible. I found imaging directly forwards or to the rear of the ship helped minimise this effect but still trails were still inevitable. Experimenting with various settings I found about 12 to 15 seconds exposure and ISO 1,600 generally worked quite well but varied depending on the sea conditions and nature of the aurora at any time.

At such high latitudes it is still very cold in February and warm head-to-feet-to-hands clothing is absolutely essential.  On this occasion, together with wind chill the temperature at the ships bow ranged from between -20oC to -30oC (that’s a minus sign!), making camera control very difficult and uncomfortable!  I tried using an intervalometer for remote shooting but as settings have to be changed frequently by hand it was not very practical; I’m sure on land it would prove much more helpful.  Furthermore, much of the time I had to hold the tripod down with some force as the wind was very severe.

Notwithstanding, I’m very pleased with the results shown below and would love to return again one day, perhaps in the summer – it is a truly different and very special part of the world – hat’s off to Richard With and all those who still sail these waters.

img_7634hpass-largeimg_7768x-large

img_7754star-crop-largeimg_8063x-large

 

Spaceship Earth

bbbb

I’m now into my second year of ‘serious’ astronomy and astrophotography, which accompanied by a greater knowledge of the Universe has brought an element of familiarity: with the equipment, with viewing & imaging techniques and space itself.  In the past I have worked underground as a geologist on mines and like to think that I have good spatial awareness.  Through this growing familiarity and knowledge of the night sky, I have become increasingly aware of our place in the Universe and how we on Earth are travelling through space; I also feel a growing empathy other peoples such as mariners who use and relate to the sky and space in a way ordinary people do not.

Whilst spinning on its axis at 1,037 mph at the equator (653 mph here at Fairvale Observatory’s higher latitude), the Earth is moving at about 70,000 mph round the Sun.  Furthermore, located in the Orion-Cygnus arm of the Milky Way, the Solar System is also moving around the spiral galaxy at 500,000 mph, resulting in a galactic year of nearly 250,000 Earth years .  Notwithstanding these complex and frankly mind boggling statistics, it thankfully all feels quite serene when outside at night with my telescope at Fairvale Observatory.

Milky_Way_Arms_ssc2008-10

 

Going back some 5,000 years the constellations might seem to describe the ‘shape’ of space and provide a sense of stability to the sky but this is misleading.  These and other asterisms are 2D patterns that mankind has created for practical use, whereas in reality most of the stars that make up these patterns bear little if any meaningful relationship with each other when viewed in 3D – like this animation showing the true shape of Orion.

spiralArms

Furthermore, under the force of gravity and other as yet unknown influences e.g. dark energy, these too are moving through space in their own way at vast speeds.  In reality the constellations are therefore anything but permanent and through the millennia their apparent shapes change and will eventually be destroyed as far as we on Earth are concerned.  As with my professional subject geology, this is the problem with space – it is very big and the timescales are very, very large, essentially beyond human comprehension, which result in otherwise unimaginable events; this animation wonderfully illustrates the scale and complexity of the known Universe.

Space selfie - the insignificance of Earth. The Pale Blue Spot photograph of Earth (right side of picture) taken 6 billion kilometers (40.5 AU) away by Voyager-1 on February 14th 1990,

Space selfie = the insignificance of Earth.
The Pale Blue Spot photograph of Earth (right side of picture) taken 6 billion kilometers (40.5 AU) away by Voyager-1 on February 14th 1990,

The beauty of such a system is that it can be modelled very accurately, from which it is possible to predict with great certainty the projected position of all these celestial objects, thus making spaceflight and the prediction of astronomical events possible.  Likewise using the same data modelling it is possible to look backwards at past events.  Such computerisation is no longer just the preserve of NASA and University academics but is at our fingertips using a computer based planetarium, in my case Carte du Ciel – incredible!

Given the time of year I have therefore used the aforesaid programme to generate a view of the night sky from Bethlehem 2015 years ago on the morning and evening of 25th December.  Even then differences can be seen in the shape of the constellations compared to now.  If we are to believe the story of the Three Wise Men following a bight ‘star’ at this time, it seems it would be most likely to be in the morning when first Jupiter and then Venus are present.  Either way it’s fascinating to be able to model the night sky in this way for any chosen moment in time.

xmas.cdc5

 

xmas.cdc3

 

Santa's view of Bethlehem - actually from the ISS on 24th December 2011

Santa’s view of Bethlehem from the ISS on 24th December 2011

After weeks of cloud cover I recently managed to get outside again for what turned out to be a wonderfully clear night, from dawn to dusk, furthermore there was no Moon!  As a result imaging was productive and included some exciting new objects.  However, again given the time of year for the moment I am repeating an object used last Christmas.  One year on the difference is that this time I have used a  modded Canon 550D DSLR camera and thus improved (I think) the red Ha-light detail.

Cone Nebula & Christmas Tree Cluster WO GT81 + Modded Canon 550D & FF | 15 sec @ ISO 1,600 + calibration | 8th December 2015

Cone Nebula & Christmas Tree Cluster – right of centre
WO GT81 + Modded Canon 550D & FF | 15 sec @ ISO 1,600 + calibration | 8th December 2015

 

Cone Nebula (bottom centre) & Christmas Tree Cluster (inverted)

Cone Nebula (bottom centre) & Christmas Tree Cluster (inverted)

NGC 2264 or Christmas Tree cluster and its neighbour the Cone Nebula are located within the Monoceros AKA Unicorn constellation, which being part of the Milky Way are therefore inextricably linked to a similar destiny as spaceship Earth as it makes its way through space.  Being some 2,700 light-years away we are unlikely to meet, though you never know with space and time!

HAPPY CHRISTMAS

HAPPY CHRISTMAS

 

 

Fly me to the dark side of the Moon

I am still struggling to return to astronomy – no longer hampered since July recovering from my knee operation, which though stiff and painful is slowly improving, but now by the weather, a one-eyed cat, my own incompetence and inevitably the Moon.

Taking care of my daughter’s cat in early August, ruled out astronomy as the unfortunate one-eyed cat is not allowed outdoors, thus making the movement of equipment freely in and out the house very difficult.  The weather then turned bad before it was time for the full Moon at month end, itself an imaging opportunity, except once more for the presence of thick cloud cover.  Shortly afterwards clear nights were forecast but twice after setting-up the equipment under a clear sky the clouds rolled in again.  Finally a week ago under a moonless clear sky, I completed the equipment set-up and turned on the mount in order to start the alignment and camera set-up sequences.

I’ve owned the current equipment since last July and after months of busy use felt I was now familiar with all the basic procedures – wrong.  Because of my operation it’s been five months since using the equipment and after going through the initial SynScan sequence I started the alignment routine, only to find that each time the scope slewed to exactly 900 east of the target star.  I diligently repeated the start-up routine a number of times but with the same result – bizarrely on switching to EQMOD linked with Carte de Ciel, the scope moved correctly to the chosen star.  It seemed there was an obvious answer to the problem but I could not work it out and in the end had to give up, missing a great opportunity as the sky continued clear all night – talk about frustrating!

The next morning I went through the complete mount set-up and SynScan start-up routine again, with a clear head and some guidance from SGL members, it took me about 10-seconds to find the problem – I had input the date as day-month-year instead of month-day-year; in this case 06/09/15 was exactly three months or one quarter earlier than the correct date input of 09/06/15, the sky equivalent of 90o.  Why is it in the 21st Century that an advanced technologically advanced country such as the USA, uses an uncommon date format and imperial units, they even mix-up themselves and as a result lost the Mars Climate Orbiter in 1999!  Notwithstanding, from frequent use I already knew the correct format but after 5-months absence couldn’t see the problem right in front of me, obvious though it was.

In the absence of ‘real’ astronomy I’ve been playing with simple camera-tripod imaging, with some rewarding results; it’s got me thinking about purchasing a smaller, simpler Vixen Polarie or equivalent tracking mount head – watch this space!  The same morning after sorting out the aforementioned date format problem, I took the opportunity to take a look at the sun in the east before turning round to see a beautiful waning crescent Moon in the western sky – who needs the night sky?

Fly me to the Moon

Fly me to the Moon

Too good to miss and after the previous evening’s disaster, I managed to get a pleasing sequence of images tracking an aircraft flying past the Moon – this being a case of making the best of what you have: daytime, the Moon and frequent overflying planes from nearby Gatwick airport and further afield.  Being approximately 42,000 further away from Earth the Moon only looks about 4-times larger than the aircraft.

Flight animation

Changing the perspective completely, I was fascinated by last month’s image of the Moon passing in front of Earth, thus also presenting a fabulous view of what we call the dark side of the Moon.  The transit was taken from the Deep Space Climate Observatory orbiting at 930,000 miles from Earth, or nearly four times greater than the Moon.

16th July 2015: The so-called dark side of the Moon, seen from the Deep Space Sky Observatory, as it passes across Earth. From our perspective that day it was a New Moon.

16th July 2015: The so-called dark side of the Moon, seen from the Deep Space Climate Observatory, as it passes across Earth. From our perspective that day it was a New Moon.

Pink Floyd take note – surely this image needs to replace the iconic cover from their 1973 album – it’s all about changing perspective; apart from being a spectacular photograph the image demonstrates the other side of the Moon is anything but dark!

Pink Floyd's 1973 album cover, now surely obsolete?

Pink Floyd’s 1973 album cover, now surely obsolete?

Earth’s Junkyard

Only very recently the BBC Horizon programme covered the increasing problem of space junk that now orbits Earth forming a virtual cloud of debris posing a serious threat in general and, in particular, to future space activity: obsolete satellites, broken, damaged or even fragments from destroyed man-made objects.  In addition to the ISS, communication and other satellites can often be seen passing overhead but in reality these only represent the tip of the iceberg.

Earth's Junkyard Computer-generated image of objects and debris currently being tracked orbiting Earth; it's the stuff we can't see or track that is most worrying!

Earth’s Junkyard
Computer-generated image of objects and debris currently being tracked orbiting Earth; it’s the stuff we can’t see or track that is most worrying!

Whilst visiting my daughter in Somerset at the weekend the night sky was clear and fantastically dark thanks to the New Moon and lack of light pollution when compared to Fairvale Observatory in Surrey.  Having already tried to image the Perseids in the preceding week unsuccessfully, I thought I’d try again in these much better conditions using a basic DSLR on a tripod and an intervalometer.

Despite excellent seeing conditions, the air was cool’ish and therefore prone to quickly form dew on the camera lens after just 20 minutes or so. At the time it didn’t seem as though I had captured anything of interest, however, looking at the images subsequently on the computer, I was excited to find a bright flash appearing between two of the pictures pictures – what could this be, it seemed too short to be a Perseid?  Whatever it is was had gone in the next image 5 seconds later.  I discovered the anomaly whilst flicking from one picture to the next when suddenly a bright point stood out from the otherwise unchanging starry sky by blinking – a characteristic of something unusual taking place.

I posted a query on SGL and the overwhelming consensus has been that it is most likely to be a satellite or debris flare from the aforementioned space junk – either a spinning satellite or debris that briefly produced a reflection as it passed through the field of vision.  Looking closely the bright spot does seem to be elongated from left to right, suggesting movement, though I am still perplexed why it has therefore not produced a more significant trace given the 30-second exposure being used – for a moment I even thought it might be a Super Nova!

Notwithstanding,  it’s an interesting effect, though sadly seems to confirm the extent to which mankind has already made a mess of the space around our planet.

Image before the solar flare appears - red circle indicates the area of interest.

Image before the satellite flare appears – red circle indicates the area of interest.

Solar flare, indicated by the red arrow?

+ 5 seconds later a satellite / debris flare, indicated by the red arrow?

Notes: The pictures were taken at 10.37pm on 16th August, looking north east, at about +70o inclination using a Canon EOS 700D + 18-55 lens, at 18mm and f5.6. Both images are 30 secs exposure at ISO1,600 with an interval of 5-seconds.  The area of interest is indicated with a red ring in the first image, with the white ‘object’ appearing in the following image shown by a red arrow.