Horseplay

SHO2 CompF (Large)

Who doesn’t like Orion and its constituent parts – M42/43, M78, the Witch’s Head, Barnard’s Loop etc.?  For many its annual appearance in the night sky is greatly anticipated and will form one of the main astrophotography highlights of the year as it passes across the sky between late November and February.  For me a basic afocal image of the Great Orion Nebula for the first time in 2013 marked something of an epiphany, as it demonstrated the power of long exposures in capturing the otherwise hidden beauty and excitement of Deep Sky Objects.

Since taking up astronomy and then astrophotography, I always return to at least one of Orion’s  objects each year, initially to see if I could just capture it on camera with my equipment and then to try and improve the image of each target.  It’s been a gradual process but I’m pleased to say I’ve usually managed to achieve such improvements over time, which has been both satisfying and often exciting – such is the nature of these objects.  Progress almost always resulted from one or more of four developments: new equipment, new software, new techniques and better processing.

Each step was usually small but occasionally a quantum change took place, such has been the case during the past two years: first with the change from DSLR to a CMOS mono camera and then, more recently, learning to plate solve.  I was reluctant to change to a traditional CCD mono camera which usually requires very long exposures that, in my opinion, is incompatible with British weather, light pollution and the frequent overhead passage of aircraft where I live between Gatwick and Heathrow airports – if one doesn’t get me the other will, or the low flying helicopters that pass over my observatory throughout the night from nearby Redhill aerodrome!

It was therefore very fortunate that at the same time I wanted to upgrade my camera from a DSLR, the new CMOS sensor technology had literally just arrived on the market.  With low read noise and shorter exposures, the ZWO1600MM-Cool mono camera I purchased has been a revolution for me, as well as the entire astroimaging community.  Furthermore, the use of narrowband imaging has added a completely new dimension to my astrophotography – apart from the ability to image when the Moon’s about each month and defy light pollution, narrow Ha-OIII-SII wavelengths reveal a whole new world that is both interesting and often dramatic in appearance.

Notwithstanding these developments, I was hitherto hampered by limited integration times of just over two hours (at most) either east or west of the Meridian, until in 2018 I finally mastered (probably that’s overstating my current prowess) plate solving, thereby making integration times literally infinite.  All I needed now was clear skies! Despite my enthusiasm for astrophotography, there have been times over recent months when I’ve questioned my choice of hobby and even maybe giving up.  Given sufficient funds it is possible to have the most incredible imaging set-up, capable of obtaining equally incredible images – subject to user ability – but if the sky remains cloudy it’s no more than a pile of expensive junk!

Having obtained a very decent LRGB image of the Pleiades on 17th November, armed with the ZWO1600 camera and my new plate solving skills, I decided to take on a project over the winter months.  My objective was to obtain one very good image based on a much longer integration time than I’ve previously achieved, acquired by imaging the same object over as many nights as possible during December and January. However, as Robert Burns once put it “The best laid schemes o’ Mice an’ Men, / Gang aft agley,” (translated – the best laid plans of mice and men often go awry).  Apart from one evening that fortuitously coincided with the lunar eclipse on 21st January, the skies here remained obscured by cloud from November 18th until January 27th (or 70-days!!!) and I thought my project was scuppered, that is until the other qualities required of astronomy came into play: patience and good luck.

Picture saved with settings embedded.

My first image of the Horsehead & Flame Nebulae, 23rd November 2014: William Optics GT81 +FF, Canon 700D (unmodded), SW AZ-EQ6 GT mount, 30 x 90 secs @ ISO1600 + full calibration

The Horsehead and Flame nebulae are traditionally imaged in LRGB colour, indeed my first and subsequent images of these objects have been mostly undertaken in this way (see image above).   However, inspired by a narrowband image of these objects I’d seen earlier last year, I too wanted to try and capture these nocturnal bedfellows in narrowband and process the subs using the Hubble Palette technique.  Given the aforementioned cloud problem, by the time late January had been reached Orion was already slipping over the western horizon for another year and I thought the project was dead before it could even start, at which point good luck played its part.  Starting on 27th January and for three out of the four evenings, the sky cleared and I eagerly launched into the long awaited project.

Unfortunately by now Orion crossed the Meridian about 9 p.m. and most imaging could only be undertaken on the west side, thus limiting each night’s subs again to 2½ hours or less.  But with three nights in the bag before inevitably the cloud returned on the 31st January, I had secured 106 x 5-minute Ha, OIII and SII subs or 6 hours 50 minutes of total integration time, at least three times what I had ever previously achieved.  The key was plate solving, as each night I could return to exactly the same part of the sky and continue imaging the same objects to the nearest pixel.  Having obtained and reviewed the data, it was now time to start processing.

NGC 2024 Ha Starless2

Given the quality and quantity of data obtained I decided to take my time processing and, furthermore, try to use some new techniques to make the very best of the final image.  I was particularly keen to tame some of the brighter stars like the blue supergiant Alnitak located uncomfortably close to the Flame and at the same time bring out the interstellar dust that is present in the foreground below the Horsehead and across the lower right quadrant, which becomes evident in the starless processed Ha layer (see image above).  It took quite a while but in the end I am very pleased with the outcome, which I think shows all the benefits of longer data integration and the extra care taken processing.  The final SHO narrowband version of the Horsehead and Flame nebulae looks a real cracker, perhaps one of my best and has been worth all the patience and additional time taken to show these two objects and the adjacent region literally in a new light.

Needless to say, I’m already thinking about next year, cloud permitting!  I hope to return to the Horsehead and Flame for another playtime next winter, in order to acquire more subs with which to build further on the foundation achieved this year by a stroke of luck at the very end of Orion’s annual visit – can’t wait.

IMAGING DETAILS
Object (i)Horsehead Nebula (Barnard 33)  &  (ii)  Flame Nebula (NGC 2024)
Constellation Orion
Distance 1,500 light-years
Size (i)8” x 6”  &  (ii)  30’ x 30’
Apparent Magnitude +10.0
 
Scope  William Optics GT81 + Focal Reducer FL 382mm  f4.72
Mount SW AZ-EQ6 GT + EQ-ASCOM computer control
Guiding William Optics 50mm guide scope
  + Starlight Xpress Lodestar X2 guide camera & PHD2 control
Camera ZWO1600MM-Cool (mono)   CMOS sensor
  FOV 2.65o x 2.0o Resolution 2.05”/pix Max. image size 4,656 x 3,520 pix   
EFW ZWOx8 + ZWO LRGB & Ha OIII SII 7nm filters 
Capture & Processing Astro Photography Tool + PS2,  Deep Sky Stacker & Photoshop CS2, HLVG
Image Location              & Orientation Centre  RA 05:40:57    DEC -02:30:55                     

Top = North 

Exposures 40×300 sec Ha+34×300 sec OIII+32x300sec SII  (Total time: 6hr 50min )   
  @ 139 Gain   21  Offset @ -20oC    
Calibration 5×300 sec Darks  20×1/4000 sec Bias 10xFlats Ha-OIII-SII  @ ADU 25,000  
Location & Darkness Fairvale Observatory – Redhill – Surrey – UK     Typically Bortle 5-6
Date & Time 27th, 28th & 30th  January 2019 @ +21.30h  
Weather Approx. <=1oC   RH <=90%                🌙 ½ to ¼ waning

Howling Wolf

lunar eclipse mosaic 210119x

I have a theory that at or about the time of each full moon the night sky is almost always clear, I don’t have the data but it just seems that way most of the time.  As an astrophotographer I am more than usually aware of the full moon as it makes all except narrowband imaging impossible, when it floods the night sky with its brilliant white light.  Apart from a brief and somewhat futile attempt on 14th December – the Moon and mixed cloud curtailed imaging on that occasion – my last astronomy at Fairvale Observatory was on the 17th October, thereafter being plagued by persistent cloud and bad weather; after a promising start at Les Granges Observatory in early November no further astronomy was possible during the rest of the week due to cloud and poor weather conditions.  I’m beginning to think I need a new hobby, one that is not weather dependent at least!

Given the disappointing lack of astronomy conditions I paid little attention to the upcoming lunar eclipse on the early morning of 21st January.  However, as the day approached various weather forecasts were inevitably mixed but at least two out of five held some promise of clear skies during part of the eclipse.  I therefore started to at least undertake some preliminary planning, only to discover that much of the eclipse might be obscured by houses and tall trees to the west of my location; Plan-B was to travel to nearby Reigate Priory Park which has a decent westerly outlook closer to the horizon.

As it turned out on the 20th a clear, sunny but cold and clear day preceded a clear evening and at about 3 a.m. on the 21st shortly before the action was due to start, the sky was still clear, thankfully proving my theory correct on this occasion.  Furthermore, my concerns over obscured views turned out to be mostly unfounded, with the Moon higher in the sky than envisaged and good sightlines up until the end of totality, at which time the cloud eventually rolled in anyway.  As a result I was able to enjoy over two hours viewing and imaging time, which encompassed the entire penumbral and totality stages of the eclipse.

Having obtained excellent images of the last lunar eclipse on 28th September 2015, tracking with a DSRL and the William Optics GT81 + another static, tripod fitted DSLR and 250mm zoom lens, this time I decided to adopt a different, more mobile set-up, in case Plan-B was necessary.  In 2017 I purchased a Canon 300mm f/4 L-Series telephoto lens to use for astronomy and wildlife photography.  The Canon’s Series-L lenses are a high quality, professional line especially made for APS-C cameras such as the 700D.  With no less than 15 lens elements and a fixed focal length, the picture quality for terrestrial imaging is fantastic, further assisted by a very accurate and quite image stabilizer.

This time I mounted the lens directly onto the tripod, with the camera further back so as to provide good balance between the two components.  As the autofocus and IS functions cannot be used in a dark sky for astrophotography, focus can be tricky and a compromise is required between the aperture setting for sharpness and a low ISO for quality.  As I discovered last time, the light quality diminishes significantly whilst the eclipse progresses across the face of the Moon and the aforesaid settings need to be constantly adjusted to compensate, especially during totality.  In the end I was pleased with the outcome of imaging the so-called Super Blood Wolf Moon (see mosaic above and image below).

img_1235x

As pleasing as imaging the eclipse is, like a solar eclipse viewing is an entirely different experience.  It is a pleasure to just watch the whole phenomena play out but the dramatic changes of light also has a profound effect on both the night sky itself and, in particular, the very nature of the Moon as perceived by the naked eye. On a clear night the full moon floods the night sky with its very bright light, thereby effectively hiding all but the very brightest of stars from view.  As the penumbral stage progresses (see diagram below) for about an hour the dark night sky is slowly revealed in all its glory, it’s as if someone has pulled the curtains and a new world has appeared.

total-lunar-eclipse-jan-2019-plot

Furthermore, as the moon darkens and eventually enters totality it takes on a completely different and eerie feeling, as well as a red hue caused by Raleigh scattering.  As is often the case with astrophotography the camera sensor is able to capture much greater colour and detail than the naked eye can see, thus producing beautiful images of one of nature’s best shows.  However, to the naked eye the moon takes on a different, somewhat strange nature during totality – something of a 3D effect occurs as it seems to float in the night sky like a big red balloon – something that an image cannot ever capture, making the night time adventure more exciting and worth all the effort.

Lunar eclipses are not that rare but we now have to wait 10-years for the next one in the UK which will take place on 20th December 2029, with or without cloud!

IMAGING DETAILS
Object Lunar eclipse – Super Blood Wolf Moon
Distance <238,000 miles (30,000 miles closer than usual)
Size 31’or 1/2o  
Apparent Magnitude -12.74  @ mean full moon
 
Scope / Lens  Canon L-Series 300mm f/4
Mount Manfrotto tripod
Camera Canon 700D  
Capture & Processing Manual, Photoshop CS3- Extended
Exposures x50:  Penumbral f/8   1/125’   ISO 100     Totality f/5.6  0.80’   ISO 400    
    
Location & Darkness Fairvale Observatory – Redhill – Surrey – UK        Typically Bortle 5
Date & Time 21st January 2019 @ approx. 03.30h  
Weather <= 1oC   RH <=95%                  🌙   Eclipse

Reflections 2018

Reflections is a summary of my astronomy and astrophotography during the past year, plus some thoughts about what might happen in going forwards.  In some ways it’s a bit of a chore to compile but as it provides me with some perspective on what I’ve achieved year-to-year, I do find it to be a worthwhile exercise.

Watch This Space (Man) started in 2015 as a personal record of my astronomy journey. Notwithstanding, the blog has so far attracted 15,000 views from all over the world, including various locations in 64 countries over the past year (see map below for visitors in 2018).   I do like to hear from anybody out there – comments, questions, help or just to say hello  – and can be contacted via details in the ABOUT menu section or alternatively  just leave a comment on any item if you prefer.

 

WTSM Map 2018

 

I’m always tinkering with the website where apart from the main blog, there are also links to other astrophotographers, astronomy tools, astronomy weather, scientific papers etc.,  so even if you’re a regular visitor please take a look around from time-to-time.  Looking back I see I did not file any reports this year  under the new Astrobites section, on the other hand look out for more notable occasional image that now appears in the right-hand column under the heading Screenshot, which this year included: the Eskimo Nebula, Jupiter, the Moon & Jupiter in conjunction and Venus etc.         

Whilst there is a photo gallery of my work, for a more summary view of some of my better images there’s a FLICKR album link which is accessible from the GALLERY menu.  Following the change to mono imaging techniques in 2017, for reference each image is now accompanied by a detailed tabulation of the technical information; personally I find this information invaluable when looking at other astrophotographer’s images as a guide to settings and issues when imaging the same object myself for the first time.

Reflections Banner

Overview, Images & Goals for 2019

Since getting to grips with autoguiding in 2017, I’m pleased to say all the basic processes worked well throughout 2018, resulting in a marked improvement of individual image subs.  Long imaging times are difficult to achieve in the UK with poor skies being the norm but the successful adoption of Plate Solving this year marked a very significant breakthrough and holds great promise for ever longer integration times in the future.  Re-configuring the equipment and operating set-up in 2017 now enables operating from indoors most of the time, which apart from improving working conditions, has also made operating itself much more efficient.

I’m especially pleased that after more than 4-years astrophotography I finally manged to establish a new imaging location at the bottom of the garden this year, thereby for the first time enabling imaging of the north sky, literally opening up a new world!  For another perspective I was also fortunate to experience some excellent night skies in New Zealand, France and Cornwall during the year, which was great fun and led to some excellent images too (see 2018 CHRONICLE later in this blog).

Favourite Images

Apart from the odd DSLR shot of the night sky, my astrophotography at Fairvale Observatory in 2018 was entirely carried out with the ZWO1600MM-Cool mono CMOS sensor camera & EFW, combined with the William Optics GT81 scope, in both narrowband and broadband wavelengths.  The new camera has in every sense been a game changer and a lot more work but, in my opinion, the images this year show substantial improvement.  I also made progress using more complex processing techniques in Photoshop and improved colour and detail by combining Ha with LRGB or adding RGB and narrowband wavelengths.  With these advances I submitted a number of images to the British Astronomical Association which, I’m pleased to say, were chosen for publication on their website at various times throughout the year (see Astroimaging Record 2018 at end of blog for details).

A few of my personal favourites are shown below, in no particular order:

GR Final HaLRGB

M74 Phantom Galaxy (HaLRGB)

RGB HaOO XXX2

Rosette Nebula (HaOO) 

M13 LRGB Close-up

M13 Great Globular Cluster of Hercules (LRGB) 

Sombrero Galaxy

M104 Sombrero Galaxy (LRGB)

HHOO hlvg (Large)

Heart Nebula (HaOO)

RGB2 GxFinalX (Large)

M45 Pleiades (LRGB)

 

RECORD CARD – 2018
Goal Specifics / Results Outcome
Improve broadband and narrowband imaging

 

Improved understanding and use of the ZWO1600MM-Cool mono camera leading to better subs.  Major breakthrough with Plate Solving enabling a significant increase in image integration times and overall quality. MUCH BETTER

 

 

Improve processing Continuing to make improvements and achieving noticeably better narrowband images but with more work to do in broadband. Much greater use of various Photoshop techniques is improving detail, colours and final quality. BETTER

 

 

Expand & Improve Widefield Imaging Despite some good images of the Milky Way in the UK and NZ I barely used the Vixen Polarie tracking mount and did not make it to any dark sky sites in the UK. FAILED

 

 

I think it helps to set new goals each year, so here goes for 2019:

  • Imaging: (i) There’s lots of scope to improve imaging techniques but probably most of all I now need to improve guiding quality and then increase exposure and image integration times further. (ii) Start mosaic imaging using Plate Solving.
  • Improve processing: Despite progress, I expect this will continue to be a major challenge for some time to come. Working with Olly Penrice in France and using Steve Richards’ new book Dark Art or Magic Bullet provided lots of opportunities to learn more but I’m still considering a move to new software for pre- and post-processing – we shall see.
  • Other: (i) Widefield imaging – Since acquiring the Vixen Polarie two years ago I’ve done little more than dabble in the occasional night sky shot. Maybe just set my sights lower this year and just see what happens! (ii) Do more observing – I had been thinking of getting something bigger like a Dob for observing whilst imaging is underway but frankly now thinking just do a bit more when I can with what I’ve got.  (iii) Notwithstanding weather issues at Les Granges observatory in France, get back to at least one good dark sky site next year.

I’m very pleased to say 2018 was again very good year for astrophotography, almost certainly my best yet, which was especially defined by two positive developments that are already transforming my astrophotography and hold further promise in 2019 (I said the same last year but it’s true):

  • Starting to Plate Solve has opened up whole new possibilities, in particular: Meridian flips and multiple imaging over different nights; Mosaic imaging.
  • Fairvale Observatory South – The ability to see and image the north sky from the new location expands imaging possibilities very significantly – should have done it sooner.

You can’t ask for more than that and hope that WTSM’s Reflections 2019 will record further such success.

Watch this space!

wtsm logo

2018 CHRONICLE

Below is a quarter by quarter summary of my astronomy and astrophotography for the year 2018, followed by an imaging record.  It’s interesting but not surprising that I recorded about 50% less objects than in the previous year but, as explained, integration times have increased markedly – “never mind the width, feel the quality”!

JANUARY TO MARCH

The year started with a new perspective on astronomy – upside down!  A six week trip to New Zealand over the Christmas period produced some wonderful views of the night sky in the Southern Hemisphere. Using my basic DSLR and a GorillaPod, I was able to obtain some good images of the Milky Way, accompanied by the Large and Small Magellanic Clouds, which are unseen in the Northern Hemisphere.  New Zealand’s weather conditions and terrain also produced opportunities to see various noctilucent cloud formations, particularly on South Island (below).

IMG_9102 (Large)

Being Down Under for much of January I was unable to start astroimaging until February but it was worth the wait, which resulted in an excellent narrowband image of the Rosette Nebula with which to start the year .  From the experience and advice gained in 2017, in narrowband I now tend to stretch each Ha-OII-SII wavelength more aggressively prior to post-processing and, as a result, obtain better detail and contrast.  In this case the resulting HaOO version of the Rosette (see Favourite Images section above) was particularly good and for the first time was included on the British Astronomy Association’s website 🙂

BAA PotW

Since obtaining the ZWO1600MM-Cool mono camera narrowband imaging has been nothing less than a revelation to me.  Whilst tone mapping using the Hubble Palette produces quite spectacular and colourful results, applying the aforementioned stretching to the just the stacked Ha-wavelength subs can often result in equally exciting black and white (grey) images which show exquisite detail.  One such image taken in March was the Cone Nebula, which showed the more extensive nature of the HII-region as well as the Cone and Fox Fur Nebulae (below).

Picture saved with settings embedded.

With the passing of winter’s narrowband targets by the end of February, I moved on to broadband imaging in March.  Of all the DSO features, I am perhaps most fascinated by globular clusters but had previously obtained mixed results with a DSLR camera.  Using the CMOS based ZWO1600 mono camera, I was now able to obtain much noticeably better colour and detail of these exciting but enigmatic objects (see Favourite Images section for M13 & below for M3).

M3 LRGB Crop (Large)

I can be put-off by some of the more technical requirements associated with astrophotography and, I‘m ashamed to say, that my approach is first to – ignore it, then maybe undertake some research but do nothing, then consciously put it off again and then, when there’s absolutely no alternative – give it a try.  I am not a technophobe, quite the opposite, but often find technology and the people who design and write about it unclear to the point of making no sense sometimes or at least misleading; it seems  somewhat paradoxical that I even got onto astrophotography given these issues! Notwithstanding, when I eventually summon the courage to tackle such problems, almost always I get it to work, eventually.  Such has been the case with Plate Solving this year.

With sight lines limited by houses, hedges and tall trees to the east, south and west, I’ve hitherto had to make do with average imaging windows of up to 2-hours, either to the east or west of the Meridian and depending on the object’s declination – a lower levels  the Meridian view is itself hidden by two tall trees, obscuring up to 30o vertically and 10o either side.  Naturally these constraints limit the image integration times severely, with an inevitable impact on the quality of images, notably with higher noise, less colour and detail.  The answer of course is plate solving and during February this year I finally bit the proverbial bullet.

Since changing to the ZWO 1600MM-Cool camera I have used Astro Photography Tool (APT) for image capture and camera control, with great success.  The software is quite comprehensive and it is excellent to use, though like most software can be a little idiosyncratic in places.  This is the point where I either give-up, try other software or, as is the case with APT, turn to their excellent product Forum.  Armed with the APT manual and answers from the Forum, I soon managed to plate solve and obtain images of the Leo Triplet over two consecutive nights, which subsequently aligned and stacked well – at last!

APRIL TO JUNE

For the past year or more I’d been thinking about the possibility of moving the observatory to the end of the back garden during the spring and summer period, so as to provide a platform from which to view the northern sky, which as previously mentioned is otherwise completely obscured by my house.  The principal issue was how to operate the equipment some 30-metres away?  From the experience of others it seemed that both WiFi and Bluetooth can have big reliability issues and I am always keen to keep it simple, so for now I chose to try and use a long ethernet cable to link the operating / capture computer with a control computer indoors.

I had intended to set-up on the lawn but after I had recently extended the paving around a nearby shed in the corner of the garden, cut back some of the bushes and cleared out the shed it, was obvious that this was a preferable location; the paved base was more stable and provided a dry foundation on which to work but, furthermore, the adjacent shed could house the operating computer.  Despite successful tests indoors using an ethernet cable between the two computers and Teamviewer software, only when the equipment was set-up in position outside did I finally discover it no longer worked; I still don’t know why and the problem remains work in progress (when I can be bothered to look at it again).

Notwithstanding, it was obvious that I could instead comfortably operate the mount and camera myself from the shed and duly set about establishing what has now become Fairvale Observatory South or the Shed Observatory (see photos above); the principal observatory location by the house now becomes Fairvale Observatory North or Patio Observatory. Having established myself at the end of the garden with a not unreasonable view of the north sky over the roof of my house, I eagerly set about imaging some northern classics over the next few months.  Imaging in both narrowband and broadband I was pleased to obtain decent pictures of the Bode & Cigar galaxies and the Elephant’s Trunk Nebula before taking a break in June and July when there’s no astronomical darkness; I have imaged at this time of the year before but it’s sometimes good to take a break.

M81 B (Large)

My very first image of the northern sky M81 Bode & M82 Cigar Galaxies (LRGB)

Now I know the observatory works from this location, I plan to move there sooner in 2019 in order to spend more time with new set-up, hopefully improving on the aforementioned objects as well as trying new ones.  All-in-all the new location was a big success as well as being great fun.  Strangely I was surprised to find that the experience of guiding could be more demanding in the north sky but of course thinking about it more, as the views essentially centre on Polaris on which RA lines converge the tracking needs to be more extreme in order to move the same angular distance when compared to a southward view.  However, anxious not to upset the established settings too much, my set-up was shoddy and, as a result, guiding error was generally poor from this locality.  Next time I’ll pay more attention to this and hopefully achieve better guiding and subs.

JULY TO SEPTEMBER

After a break of nearly 8-weeks I was eager to get back to the ‘new’ observatory at the bottom of the garden.  Furthermore, much of the summer through into September was dominated by a heatwave which was accompanied by clear skies, night after night!  As a result I was able to get some very encouraging results of the Heart (see Favourite Images section above) and Soul Nebulae and finally, to my surprise, the unusual Bubble Nebula (see image below).

SHO2int3 (Large)

OCTOBER TO DECEMBER

Needless to say, once back at Fairvale Observatory North the clouds rolled in and, furthermore, suitable objects for my equipment are initially sparse at this time of the year.  Since obtaining the ZWO1600MM-Cool camera I’ve concentrated on nebulae and narrowband imaging.  Though I’ve managed a few decent LRGB images, it’s fair to say that there’s room for improvement here and therefore finished the year on M33 the Triangulum Galaxy (see below) and subsequently M45 the Pleiades.  Despite being a good size for my scope it’s become clear to me that M33 is actually a tricky object and I was not satisfied with the final image – again better guiding and longer integration next time will almost certainly help.  However, Pleiades subsequently came out well (see Favourite Images section above) but the delicate interplay of the blue star light and interstellar dust does require careful post-processing.

LRGB P2 CropXX

As it was my birthday and it’s been something of an overdue trip since first conceived in 2015, I travelled to Olly Penrice’s Les Granges Observatory at the beginning of November.  It’s a great set-up and Olly was a real pleasure to work and learn from.  As a somewhat remote location in the Hautes-Alpes region of Provence, when it’s clear the SQM values at Les Granges can exceed 22 and for the first two nights we were able to image M74 the Phantom galaxy in HaLRGB under such conditions using his TEC 140, though following some rain during the day seeing conditions were mixed on the first night.

HaLRGB mosaic (Large)

Unfortunately the clouds had followed me from the UK and for the rest of the time there we were unable to image, though it did allow me to spend some useful and enjoyable time processing with Olly.  Other than processing the M74 image and learning some new techniques, using data previously acquired by Olly and with his help, I was able to compile a wonderful 9-panel HaLRGB widefield mosaic image of the North America Nebula and surrounding region (see above).

 

Notwithstanding the mixed weather conditions, I was able to obtain my first good, face-on image of a spiral galaxy (see Favourite Images section above), which with some additional subs from Olly’s previous sessions using an 14″ ODK scope turned into a truly spectacular image (see below) of this less than popular object.

M74 ODK with TEC STARS HaLRGB Crop

 

ASTROIMAGING RECORD 2018

No Date Type Object Name
1 Jan 2018 DSLR New Zealand

 

Milky Way, Lenticular Clouds etc. 
2 09/02/18 NB NGC 2244 Rosette Nebula
       
3 11/02/18 NB NGC 2264 Cone Nebula
       
4 11/02/18 BB M44 Beehive Cluster
       
5 11/02/18 NB Abell 21 Medusa Nebula
       
6 11/02/18 BB NGC 2392 Eskimo Nebula
       
7 24/02/18 NB IC 405 Flaming Star Nebula
       
8 24/02/18 BB Moon  
       
9 19/04/18 BB M65 + M66 Leo Triplet
       
10 05/05/18 BB M3 Globular Cluster
       
11 06/05/18 BB M104 Sombrero Galaxy
       
12 06/05/18 BB M13 Globular Cluster
       
13 18/05/18 * BB M81 & M82 Bodes & Cigar Galaxies
       
14 20/05/18 NB NGC 7822 Nebula
       
15 22/05/18 NB IC 1396 Elephant’s Trunk Nebula
       
17 16/08/18 * NB IC 1805 Heart Nebula
       
18 02/09/18 NB IC 1848 Soul Nebula
       
19 03/09/18 NB NGC 7635 Bubble Nebula
       
20 09/10/18 BB M33 Triangulum Galaxy
       
21 28/10/18 BB M33 Triangulum Galaxy
       
22 2/11/18 BB M74 Phantom Galaxy
       
23 17/11/18 BB M45 Pleiades
       
24 18/11/18 BB IC 2118 Witch’s Head Nebula
       

*multiple evenings                                            Underlined = BAA published

 

Vanguard Of The Winter Night Sky

RGB2 GxFinalX (Large)

Each year whilst the Earth rotates around the Sun, we are also moving through the Milky Way and the Universe itself.  In time, measured by millions of years, the pattern of the night sky will change but for now, measured on a human scale it appears fixed and as a result has become very familiar, so much so that it has formed the basis of navigation for millennia.  For astronomers this affect also results in a predictable pattern of changes during the year, so that every 12-months we first anticipate and then revisit old ‘friends’, none more so than the winter night sky which contains some of the most exciting objects of the year.

Winter Sky Surprisingly it is possible to obtain an early glimpse of these objects just before dusk at the end of a night’s viewing in the late summer but the real show begins during November, when they start to appear more conveniently in the darkness of the early evening.  With this in mind I recently set out to image the vanguard of the winter night sky, Messsier 45 or the Pleiades, an open cluster dominated by bright blue stars.  Located at the ‘front’ of the Taurus constellation, this group of stars heralds the arrival of Orion, perhaps the most spectacular and certainly most imaged constellation of the year, followed by Monoceros, Gemini and Auriga with their own wonderful deep sky objects – but first Pleiades.

525px-M45map

The Pleiades star cluster is visible from almost every part of the globe, from the North Pole to beyond the southernmost tip of South America.  The cluster consists of over 1,000 young stars, although only 14 can be seen with the naked eye, of which seven make up the Pleiades asterism or so-called Seven Sisters.  The Sisters can usually be seen in light polluted skies but in a dark sky, such as I recently experienced at the Les Granges Observatory in southern France, they form a very distinct group of brilliant stars that literally seem to pierce the blackness of the night sky (top-centre image below).

IMG_1111 (Large)

I have successfully imaged the Pleiades before with a DSLR camera but this was the first serious attempt to capture their elusive charm with a more sensitive mono camera.  When imaging the Sisters the objectives are two-fold – to capture: (i) their brilliance and colour, and (ii) the delicate interplay of their light illuminating the interstellar gas and dust behind which they are currently moving. It is this latter effect that forms their characteristic signature which differentiates them from other open star clusters.

Given the brightness of the Pleiades stars I chose short 60-second LRGB exposures at Unity setting.  Such is the subtle nature of the interstellar illumination against the intensity of the large, bright Pleiades stars, that post-processing needs to be especially careful in order to tease out the contrasting nature of the two features.  The result is a beautiful image (top-of-the-page) that captures the power and beauty of this special group of stars which precedes Orion later in the evening at this time of the year and which with luck, will once again provide further exciting opportunities as we continue to move through the rich period of the winter night sky of which the appearance of Pleiades foretells.

IMAGING DETAILS
Object M45 Pleiades
Constellation Taurus
Distance 444 light-years
Size 110’
Apparent Magnitude +1.6
 
Scope  William Optics GT81 + Focal Reducer FL 382mm  f4.72
Mount SW AZ-EQ6 GT + EQASCOM computer control
Guiding William Optics 50mm guide scope
  + Starlight Xpress Lodestar X2 guide camera & PHD2 control
Camera ZWO1600MM-Cool (mono)   CMOS sensor
  FOV 2.65o x 2.0o Resolution 2.05”/pix  Max. image size 4,656 x 3,520 pix   
EFW ZWOx8 + ZWO LRGB & Ha OIII SII 7nm filters 
Capture & Processing Astro Photography Tool + PS2,  Deep Sky Stacker & Photoshop CS2, HLVG
Image Location              & Orientation Centre  RA 03:47:06    DEC 24:13:04                     

Top = North West   

Exposures 50 x 60 sec L & 45 x 60 sec RGB  (Total time: 185 minutes)   
  @ 139 Gain   21  Offset @ -20oC    
Calibration 15 x 60 sec Darks  20 x 1/4000 sec Bias  10 x Flats LRGB    @ ADU 25,000  
Location & Darkness Fairvale Observatory – Redhill – Surrey – UK        Typically Bortle 5
Date & Time 17th  November 2018 @ +21.30h  
Weather & Moon Approx. 6oC      RH <=80%          🌙 Half Waxing Gibbous          

 

 

Other Worlds

GR Final HaLRGB

Apart from the simple enjoyment of travel, it often opens the potential for new opportunities and experiences that more profoundly broadens one’s horizons; I’ve travelled extensively during my life which has been enriched accordingly.  Earlier this month I visited astrophotographer Oliver (Olly) Penrice at his Les Granges Observatory in the Hautes-Alps region of Provence in France, with the objectives of imaging with a more favourable dark sky and to learn from Olly’s experience.

Les Granges Location (Medium)

Situated deep in the mountains and very much off the beaten track, Les Granges is in the small (28 people) hamlet of Ètoile-Saint-Cyrice, some way from Peter Mayle’s better known Provence but nonetheless itself interesting and beautiful, with some wonderful geology to boot; after all my wife and I are also geologists.

IMG_1046 (Medium)

Area immediately north east of Etoile-Saint-Cyrice

IMG_1066 (Medium)

Spectacular monocline rock folding at Sisteron

Subject to time and conditions, I particularly wanted to image a target that could not be achieved at home, either because it cannot be seen from my location or is beyond the capabilities of my equipment. Before leaving for France I therefore researched the projected night sky at Les Granges and developed a short list of potential targets, number one of which was a spiral galaxy.  At the moment my equipment struggles with these faint fuzzies and I’ve long wished to bag a good image of a ‘proper’ galaxy.  With galaxy season still a few months off the choice was limited but it soon became clear that M74, the Phantom Galaxy would provide such a target: it is not commonly imaged, is somewhat faint and difficult to see but is a classic, face-on spiral galaxy – just right for Guy Fawkes Night on November 5th too!

M74 at les granges 051118 10pm

Olly’s imaging equipment consists of a Takahashi FSQ106Ns rig and a more suitable TEC 140 f/7 refractor, which when matched with an Atik 460 CCD camera was just the job for the proposed task.  Outstanding night skies at the Les Granges Observatory are commonplace, with SQM values in excess of 22 but it was raining when we arrived and the outlook seemed less than perfect.  Notwithstanding, the next two nights were clear in the early evening and so on the first night we managed to obtain 3-hours of RGB subs, followed by nearly 2.5 hours of Ha and Luminance data the following evening.  Whilst imaging we also spent time observing, in these conditions Andromeda Galaxy was clearly visible with the naked eye but using the 14″ Meade LX200 which Olly inherited from the late Alan Longstaff other objects such as M27 and M33 came to life in the eyepiece.

IMG_20181108_115731653 (Medium)

Does what it says on the tin – entrance to Les Granges observatory

Sadly the rain returned thereafter and this turned out to be the only window of opportunity for the rest of the week!  Thankfully Olly has a vast wealth of data that included some of M74, from which we were able to bolster our meagre data from the first two evenings of imaging the same object.

Since returning home I’ve worked on the recently acquired data again and am pleased with the resulting image, shown at the top of the page.  In particular, the addition of Ha-wavelength light has brought the galaxy to life where it highlights areas of star formation located within the spiral arms, in the form of distinctive areas of magenta coloured red spots – a characteristic sign of such activity within galaxies.  Olly also produced an alternative image by combining data from the aforesaid recent image with additional data previously taken with an ODK 14 inch scope.  This resulted in a total integration time of some 17-hours and produced a stunning image of M74 that I’m pleased to say I played a small part in (see below).

M74 ODK with TEC STARS HaLRGB Crop

It was disappointing that much of the time at Les Granges was spoilt by poor weather but I was able to use some of that time on processing techniques with Olly and just enjoying the wonderful ambiance that comes from being in such a location.  I hope to return again some time in order to enjoy the beauty of the area and the night sky that can be seen – when it’s not cloudy.  In the meantime, I’m more than pleased to catch some photons from another world of another world, which has resulted in stunning images of a spiral galaxy – at last.

  IMAGING DETAILS
Object M74 Phantom Galaxy
Constellation Pisces
Distance 30-million light-years
Size 10.5’ x 9.50’     
Apparent Magnitude +10.0
   
Scope  TEC 140   FL 980 mm   f7.00      (+ADK 14”)
Mount Mesu 200
Guiding PHD2 
Camera Atik 460 CCD  Pixels 4.50 ɥm
  FOV 43.80’ x 35.04’  Resolution 0.96”/ pixel     
Capture & Processing Atik software capture, Astroart pre-processing, PixInsight and Photoshop CS3 post processing
Image Location RA 01:36:41    DEC 15:47:01                       
Exposures 6 x 600sec RGB + 5×900 sec L & Ha  = 320 minutes  @ -20o
Location & Darkness Ètolie-Saint-Cyrice, Hautes-Alps Provence, France        SQM <=21.50 – 22.00
Date & Time 2nd & 3rd November 2018 @ +20.30h  
Weather <=8oC    RH% high

Triangulum

LRGB P2 CropXX

After we say goodbye to Orion each year, the galaxy season starts in February and lasts through until late April.  It seems almost unbelievable that the existence of galaxies outside of our own Milky Way was unknown to mankind until Edwin Hubble’s work in 1929; the Andromeda Nebula turned out to be a galaxy as did all those other faint fuzzies and many more that have since been discovered.  Like grains of sand on the beach, there are currently known to be at least two trillion galaxies in the observable Universe and no doubt many more as yet remain undiscovered.  On Earth we really are a very, very small speck in space and can only wonder at those other worlds.

Despite their abundance I struggle to image galaxies with the otherwise excellent William Optics GT81 telescope, except for the few largest ones that are closest to Earth in the so-called Local Group, such as the aforesaid Andromeda Galaxy and located nearby M33 or the Triangulum Galaxy.  About one quarter the size pf Andromeda, M33 still provides a decent imaging target for my equipment, which I’ve attempted before using a DSLR camera with some success.  So, before the winter night sky arrives I thought I’d give M33 a try for the first time using the ZWO1600MM-Cool CMOS mono camera.

M33 Chart

M33 is characterized by its large, sprawling spiral arms, within which are located numerous H-II regions, home to large stellar nurseries.  Its mass is thought to extend well beyond the visible galaxy, with large areas of cold dust now identified around and beyond the spiral arms.  Interestingly infrared imaging by the Spitzer Space Telescope (below) shows much more discrete structures throughout the disc than is evident in the visible light spectrum.  The future of M33 is somewhat uncertain but seems to point towards its destruction, either by Andromeda or alternatively crashing into the Milky Way!

1280px-Spitzer_m33 Imaging experience to-date with the ZWO camera has shown that 5-minute exposures and unitary settings – Gain 139 Offset 21 – produces a good result with most nebulae targets, however, imaging star clusters and galaxies remains work-in-progress.  Whilst tempted to continue with this approach, after reviewing and adjusting the PHD2 settings my guiding has been poor recently, so on this occasion I chose shorter 3-minute exposures to obtain LRGB and Ha subs.

With nearly 3-hours integration time the resulting LRGB image turned out good (top-of-the page) and noticeably better than using a DSLR camera.  The H-II regions were captured with the Ha-subs but subsequently did not integrate very well with the main LRGB image – or maybe that was my error?  Whilst pleased with the outcome for now, on reflection I think there are issues that still need to be addressed in order to obtain a better outcome next time:

  • Although M33 is quite bright, the spiral arms are somewhat diffuse in nature and would benefit from much longer integration time and better guiding to achieve less noise and greater depth in the resulting image;
  • The jury’s out on exposure times but I feel that 5-minutes might still work better and is certainly worth trying;
  • Though much improved, processing remains a weakness and needs to be improved.

Notwithstanding the above M33 is a wonderful object and, as ever, I remain inspired by the galaxy itself and images of others to do better in the future.

IMAGING DETAILS
Object M33 Triangulum Galaxy
Constellation Triangulum
Distance Approx.. 2.7 million light-years
Size 71’ x 42’  or 60,000 light-years
Apparent Magnitude +5.72
 
Scope  William Optics GT81 + Focal Reducer FL 382mm  f4.72
Mount SW AZ-EQ6 GT + EQASCOM computer control
Guiding William Optics 50mm guide scope
  + Starlight Xpress Lodestar X2 guide camera & PHD2 control
Camera ZWO1600MM-Cool (mono)   CMOS sensor
  FOV 2.65o x 2.0o Resolution 2.05”/pix  Max. image size 4,656 x 3,520 pix   
EFW ZWOx8 + ZWO LRGB & Ha OIII SII 7nm filters 
Capture & Processing Astro Photography Tool + PS2,  Deep Sky Stacker & Photoshop CS2, HLVG
Image Location              & Orientation Centre  RA 01:34:02    DEC 30:38:51                     

Top = North  Right = West   Bottom = South Left = East 

Exposures 12 x 180 sec RGB + 10×10 sec L & Ha  (Total time: 168 minutes)   
  @ 139 Gain   21  Offset @ -20oC    
Calibration 10 x 180 sec Darks  20 x 1/4000 sec Bias  10 x Flats LRGB + Ha  @ ADU 25,000  
Location & Darkness Fairvale Observatory – Redhill – Surrey – UK        Typically Bortle 5
Date & Time 9th October 2018 @ +22.00h  
Weather Approx. 12oC   RH = 90%

 

New Northern Horizons

SHO2int3 (Large)

Having past the Autumn Equinox I’ve moved the observatory back to its main location on the patio looking south for the winter but not before a final look at the northern sky from the newly established Shed Observatory situated at the end of the garden.  After setting up The Shed in mid-May I have had a productive and very enjoyable time imaging and looking at the northern night sky properly for the first time.  My objective has been to learn more about this part of the sky and bag as many northern DSO classics as possible during the limited darkness available at this time of the year.  Furthermore, I set out to determine optimum imaging parameters for these objects in preparation for more extensive sessions at the same time next year.

Altogether I managed six targets with some good results, three of which have already been posted here: M81 Bodes & M82 Cigar galaxies, IC 1396 Elephant’s Trunk Nebula and IC 1805 the Heart Nebula. Whilst the new Shed Observatory provided a good view of much of the north sky, I did cut corners with the set-up and as a result guiding was not always at its best, sometimes with an impact on quality.  This has been a period of experimentation but now I know this location works, next time I’ll pay more attention to these matters.  In addition to the aforementioned objects I was also able to image three others, with mixed results.

I came across NGC 7822 soon after moving to the new Shed Observatory site whilst investigating the imaging possibilities from this location.  This complex emission nebula appears to be overlooked by many astrophotographers, though judging from the images that are available it can be quite a spectacular target, providing great promise in narrowband wavelengths when using the right equipment.  Whilst the main Ha image looked promising (below), sadly on this occasion the SHO & HOO images lack detail and colour; on reflection the focus looks a bit suspect too!

IMAGING DETAILS
Object NGC 7822
Constellation Cepheus
Distance 2,900 light-years
Size 100’   
Apparent Magnitude +18.3
 
Scope  William Optics GT81 + Focal Reducer FL 382mm  f4.72
Mount SW AZ-EQ6 GT + EQASCOM computer control
Guiding William Optics 50mm guide scope
  + Starlight Xpress Lodestar X2 guide camera & PHD2 control
Camera ZWO1600MM-Cool (mono)   CMOS sensor
  FOV 2.65o x 2.0o Resolution 2.05”/pix  Max. size 4,656 x 3,520 pix   
EFW ZWOx8 + ZWO LRGB & Ha OIII SII 7nm filters 
Capture & Processing Astro Photography Tool + PS2,  Deep Sky Stacker & Photoshop CS2, HLVG
Image Location              & Orientation Centre  RA 00:02:35     DEC 67:13:55                     

North Sky: Top Left = North  Top Right = East  

Exposures 20 x 180 sec Ha + 10×180 sec OIII & SII  (Total time: 120 minutes)   
  @ 300 Gain   50 Offset @ -20oC    
Calibration 5 x 300 sec Darks  20 x 1/4000 sec Bias  10 x Flats Ha-OIII-SII  @ ADU 25,000  
Location & Darkness Fairvale Observatory  South – Redhill – Surrey – UK        Typically Bortle 5
Date & Time 20th May 2018 @ +00.00h  
Weather Approx. <12oC   RH 70%

Once astronomical darkness was re-established in late July I soon returned to the northern sky thereafter.  After a gap of more than 2-months since my previous session in May, the north sky now provided other new opportunities, principal of which were the Heart Nebula and Soul Nebula.  Given their size and my field-of-view these objects need to be imaged separately and after a good result with the Heart Nebula, I was soon also able to tackle the nearby Soul Nebula.  However, this time the guiding was at first very poor and I decided to use the PHD2 Guiding Assistant to help correct the problem.  The new settings recommended by the Assistant made a big difference to the guiding but unfortunately I then overlooked that the consequence of running the process had changed the previous image framing of the object.  As a result of this the lower section of the nebula was no longer within the field-of-view and subsequently lost in the final image – oh well lesson learned for another day.

HaHOO crop (Large)

IMAGING DETAILS – Soul Nebula HaHOO (above) 
Object Soul Nebula IC 1848   (Westerhout-5)
Constellation Cassiopeia
Distance 6,500 light-years
Size 150’ x 75’  or 100 light-years
Apparent Magnitude +18.3
 
Scope  William Optics GT81 + Focal Reducer FL 382mm  f4.72
Mount SW AZ-EQ6 GT + EQASCOM computer control
Guiding William Optics 50mm guide scope
  + Starlight Xpress Lodestar X2 guide camera & PHD2 control
Camera ZWO1600MM-Cool (mono)   CMOS sensor
  FOV 2.65o x 2.0o Resolution 2.05”/pix  Max. size 4,656 x 3,520 pix   
EFW ZWOx8 + ZWO LRGB & Ha OIII SII 7nm filters 
Capture & Processing Astro Photography Tool + PS2,  Deep Sky Stacker & Photoshop CS2, HLVG
Image Location              & Orientation Centre  RA 02:52:25    DEC 60:01:35                     

Top  Left North  Top Right = East   Bottom Right = South   Bottom Left = West      

Exposures 20 x 300 sec Ha + 10×300 sec OIII  (Total time: 150 minutes)   
  @ 139 Gain   21  Offset @ -20oC    
Calibration 5 x 300 sec Darks  20 x 1/4000 sec Bias  10 x Flats Ha-OIII-SII  @ ADU 25,000  
Location & Darkness Fairvale Observatory – Redhill – Surrey – UK        Typically Bortle 5
Date & Time 2nd September 2018 @ +00.20h  
Weather Approx. 12oC   RH <=95%

Finally I was surprised and pleased to discover that with the early evening darkness now available in September, I might be able to image the strange but beautiful Bubble Nebula NGC 7635.  Being very high in the sky at this time, the challenge was to track the object for as long as possible before at about 1.00 a.m. it disappears overhead behind the high garden hedge located immediately adjacent to the telescope location.  I managed, just about, and was very happy to see the ‘bubble’ in the middle of the resulting image. The enigmatic bubble is created by a stellar wind from a massive, hot central star (SAO 20575) which excites the nebula and causes it to glow.  Whilst the central Bubble Nebula is undoubtedly the star of the show, this region of the sky and resulting picture holds great promise to image other objects on another occasion, notably the open cluster M51 just below and to the left of the Bubble and the Lobster Claw Nebula SH2-157 in the top-right corner.

Ha2A (Large)

 

Claw2

IMAGING DETAILS: Bubble Nebula – Ha above, SHO top of page 
Object Bubble Nebula NGC 7635
Constellation Cassiopeia
Distance 7,100 light-years
Size 15’ x 8’  (Bubble 7 light-years)
Apparent Magnitude +10.0
 
Scope  William Optics GT81 + Focal Reducer FL 382mm  f4.72
Mount SW AZ-EQ6 GT + EQASCOM computer control
Guiding William Optics 50mm guide scope
  + Starlight Xpress Lodestar X2 guide camera & PHD2 control
Camera ZWO1600MM-Cool (mono)   CMOS sensor
  FOV 2.65o x 2.0o Resolution 2.05”/pix Max. size 4,656 x 3,520 pix   
EFW ZWOx8 + ZWO LRGB & Ha OIII SII 7nm filters 
Capture & Processing Astro Photography Tool + PS2,  Deep Sky Stacker & Photoshop CS2, HLVG
Image Location              & Orientation Centre  RA 23:21:27    DEC 61:06:52                     

Top = north  Right = East   Bottom = South  Left = West 

Exposures 15 x 300 sec Ha + 10×300 sec OIII & SII  (Total time: 175 minutes)   
  @ 139 Gain   21  Offset @ -20oC    
Calibration 5 x 300 sec Darks  20 x 1/4000 sec Bias  10 x Flats Ha-OIII-SII  @ ADU 25,000  
Location & Darkness Fairvale Observatory – Redhill – Surrey – UK        Typically Bortle 5
Date & Time 3rd September 2018 @ +21.45h  
Weather Approx. 15oC   RH >=70%

My time at the end of the garden this summer at the Shed Observatory has been a great success, made all the better by a prolonged period of warm weather.  I am confident that with more attention to the set-up, better guiding and longer integration times, next year will be even better and I’m already looking forwards to revisiting this year’s new horizons in the north sky in 2019.

North Sky summer Objects

North Sky Imaged Objects May to September 2018

Heart Of Darkness

HHOO hlvg (Large)

Aside from all the paraphernalia required for astrophotography, two other critical items are essential to start imaging: clear skies and darkness.  This year astronomical darkness ceased on 25th May at Fairvale Observatory and remained absent for the next 8-weeks  whilst Earth performed its annual summer gyration about the Sun, culminating on 21st June with the solstice.  As a result this period is typically quite a barren time for astronomers, especially for those in the higher latitudes where the sun does not set for the entire 24-hour day.  Some options during this time are:  give up, stop imaging and use the time to sort out equipment, if you have the right equipment change to solar astronomy or just enjoy what happens to be about in the less than dark sky.  This year I chose the latter, during what has been a very hot summer, often with continuously clear skies for days-on-end.

Planets June 2018

From the early evening we’ve been treated to views of all the planets of the Solar System, as during the short nights one-by-one they transited along the ecliptic, though were relatively low in the sky seen from the UK.  In order of appearance, the main show (see above) each night has been that of Jupiter, followed by Saturn and finally at about 2.00 a.m. (June) Mars – which this year was an unusually large, unusually bright  red disc as it reached its closest orbit relative to Earth for almost 60,000 years – all of which could be clearly seen with the naked eye.  Unable to sleep in the hot weather, night after night I was able to view and sometimes imaged the aforesaid planets with a DSLR camera as they moved across the night sky.

Shortly after darkness started to return on 20th July came two further special events.  First on 27th July a lunar eclipse, that despite all the previous clear nights was ironically obscured by cloud cover over most of the UK!  Fortunately, clear skies returned for 13th August and the annual Perseids meteor shower, which on this occasion produced some of the best meteor trails I have personally experienced.

And so, with astronomical darkness back and the chance to return to the recently established Fairvale Observatory South AKA The Shed Observatory, it was time to resume my hitherto brief imaging experience of the northern sky again.  As a newcomer to this part of the night sky there were considerable new imaging possibilities to explore but only one I now wanted to capture – the Heart Nebula or IC 1805 (also known as the Running Dog Nebula when viewed from a different angle).

Heart-and-Soul-location The Heart and nearby Soul Nebula are situated in a busy region of the sky (see above – from Wikisky), which also contains seven open clusters of young stars, as well as the Pacman Nebula and galaxies of Maffei 1 & 2 and M31 Andromeda.  The discovery of a bright fish-shaped HII object – known as the Fishhead Nebula IC 1795 or NGC 896 at the edge of the main object – preceded that of the Heart Nebula itself in 1787 by William Herschel.  The Heart Nebula has a red glow, a result of intense radiation emanating from a small cluster of large, hot, young (1.5 My) bright-blue stars at the centre known as Melotte-15.  The stellar wind and stream of charged particles that flow out from these newborn stars then creates the characteristic heart-shape of the nebula from the stellar dust and hydrogen gas clouds.

Picture saved with settings embedded.

Located in the Perseus arm of the Milky Way in the Cassiopeia constellation, this large emission nebula is an excellent object for narrowband imaging at all wavelengths and is also well framed in the field-of-view of my telescope-camera combination; the images presented here are rotated 180 degrees to achieve the correct orientation to see the heart shape, with the Fishhead Nebula located in the bottom right corner.  Not surprisingly this large HII object produces strong Ha subs, which make a pleasing stand-alone image (above section). But the OIII and especially SII wavelengths are also very good, resulting in very good HHOO bi-colour (top-of-the-page) and SHO (below) images too.

SHO end3Final (Large)

The limited time I’ve had to image the northern sky for the first time this year has already proved to be exciting and bodes well for the future.  On this occasion I’ve been very pleased with my first imaging results of the Heart Nebula, which is a superb object for my equipment and am sure to return next year given suitably clear skies and, of course, darkness.

IMAGING DETAILS
Object Heart Nebula IC 1805    AKA Running Dog Nebula   Sharpless 2-190
Constellation Cassiopeia
Distance 7,500 light-years
Size 150’ x 150’  =  2.5o or 200 light-years
Apparent Magnitude +18.3
 
Scope  William Optics GT81 + Focal Reducer FL 382mm  f4.72
Mount SW AZ-EQ6 GT + EQASCOM computer control
Guiding William Optics 50mm guide scope
  + Starlight Xpress Lodestar X2 guide camera & PHD2 control
Camera ZWO1600MM-Cool (mono)   CMOS sensor
  FOV 2.65o x 2.0o Resolution 2.05”/pix  Max. image size 4,656 x 3,520 pix   
EFW ZWOx8 + ZWO LRGB & Ha OIII SII 7nm filters 
Capture & Processing Astro Photography Tool + PS2,  Deep Sky Stacker & Photoshop CS2, HLVG
Image Location             & Orientation Centre  RA 02:33:09    DEC 61:24:23 

Top = South   Right = West   Bottom = North   Left = East  

Exposures 20 x 300 sec Ha + 10×300 sec OIII & SII  (Total time: 200 minutes)   
  @ 139 Gain   21  Offset @ -20oC    
Calibration 5 x 300 sec Darks  20 x 1/4000 sec Bias  10 x Flats Ha-OIII-SII  @ ADU 25,000  
Location & Darkness Fairvale Observatory – Redhill – Surrey – UK        Typically Bortle 5
Date & Time 16th & 17th  August 2018 @ +23.30h  
Weather Approx. 12oC   RH <=95%

 

Jumbo Joy

Picture saved with settings embedded.

After recently establishing Fairvale Observatory South AKA “The Shed” and dealt with some expected and unexpected problems, I was able to turn my attention to the object of my desire in this hitherto inaccessible part of the northern night sky.  With the summer solstice approaching I had originally planned on imaging this astrophotographers’ favourite later in the year but I couldn’t resist an early look.  A few nights after finishing Bodes galaxy from my new, northward looking location, I therefore swung the scope across the Meridian to the north east in order to obtain a few subs of this object just to see: (a) what it might look like with my equipment (b) bearing in mind the previous objective, to assess the best framing and (c) just for the fun of it, and was not disappointed!

RGB XXX Final (Large)The aforesaid object of interest was the Elephant’s Trunk Nebula or IC 1396, a very large emission nebula, which in narrowband shows wonderful colour and detail (HaSHO above).  IC 1396 consists of glowing gas illuminated by an open star cluster, broken up by intervening lanes of dark interstellar dust clouds.  The ‘trunk’ itself, designated IC 1396A, is the long dark area protruding from the lower edge of the image, spectacularly illuminated from behind by a bright star forming region; the image has been rotated 180o from its natural position.  Top right on the edge is the red supergiant Mu Cephei or Herschel’s Garnet Star, one of the largest and brightest known stars in the Milky Way, which in the position of the Sun would extend out to Saturn’s orbit!

HHOO (Large)

The large IC 1396 nebula will not fit my field-of-view but with some judicious framing, using the Garnet Star as a marker and helped by a few previously taken test subs, I achieved a pleasing composition with the aforesaid trunk and nearby billowing dark clouds well placed (HaOIIIOIII bicolour image above).  Whilst I am pleased with my first attempt at the Elephant’s Trunk, the colour could be better and is too noisy – a consequence of too little integration time and high gain setting.  Having had success before using similar settings for Ha-type features like the Rosette Nebula, I was a little surprised by this outcome but it just goes to show that each object is different.  Notwithstanding, the Ha version is – I think – very promising (top of the page) but obviously there is too little OIII and SII in the composite wavelength images.

RGB XXX Final Crop (Medium)

I used to live and have worked all over Africa but this is a very different type of elephant to what I have met before (the “trunk” HaSHO above).  It forms an exciting imaging subject at this time of the year, made all the more rewarding being one of my first serious attempts to image the north sky.  I hope to return to this object in a couple of months when astronomical darkness has resumed but in the meantime the Jumbo of the night sky has been a real joy on my first encounter.

Elephant Location Crop

IMAGING DETAILS
Object Elephant’s Trunk Nebula   IC 1396   
Constellation Cepheus
Distance 2,400 light-years
Size 5o or “Trunk” only approx.. 45’   
Apparent Magnitude +3.5 to +5.7
 
Scope  William Optics GT81 + Focal Reducer FL 382mm  f4.72
Mount SW AZ-EQ6 GT + EQASCOM computer control
Guiding William Optics 50mm guide scope
  + Starlight Xpress Lodestar X2 guide camera & PHD2 control
Camera ZWO1600MM-Cool (mono)   CMOS sensor
  FOV 2.65o x 2.0o Resolution 2.05”/pix  Max. image size 4,656 x 3,520 pix   
EFW ZWOx8 + ZWO LRGB & Ha OIII SII 7nm filters 
Capture & Processing Astro Photography Tool + PS2,  Deep Sky Stacker & Photoshop CS2
Image Location Centre  RA 21:38:37    DEC 57:30:16  
Exposures 12 x 300 sec Ha + 6 x300 sec OIII & SII  (Total time: 120 minutes)   
  @ 300 Gain   50 Offset @ -20oC    
Calibration 5 x 300sec Darks  20 x 1/4000 sec Bias  10 x  Ha + OIII + SII  Flats @ ADU 25,000  
Location & Darkness Fairvale Observatory – Redhill – Surrey – UK        Typically Bortle 5
Date & Time 22nd May 2018  @ midnight

Boreal Breakthrough

 

M81 LRGB Final HLVG

I have often written about imaging difficulties here at Fairvale Observatory, which apart from overflying aircraft from Gatwick and Heathrow airports, 24/7 helicopters from Redhill aerodrome and general light pollution, also consists of numerous sightline obstructions in the form of large trees to the east and south, high garden hedges and the complete obstruction of the north sky by my house!  I have toyed with the idea of moving onto the lawn so as to look back northwards over the house but was concerned by all the faffing about to get the equipment down and back up a flight of steps, as well as added complications with equipment control and dew problems; I concede that many do operate successfully in this way but with plenty of other problems to cope with, I like my hobby to be as easy and convenient as possible.

Last year I enjoyed working outside during the summer months – notwithstanding the lack of darkness during much of this period – and therefore over the past winter finally considered how such a garden-based set-up could be achieved, primarily for use between May and September.  The resulting Plan-A was to place three paving stones within the lawn to support the tripod and run a USB-cable back to the house for control.  However, after recently expanding a small paved area outside the shed at the end of the garden and looking at the potential sightlines from this location, it was obvious that a Plan-B set-up here could also work.  Whilst not quite as good viewing angles as the original location, there are a number of other worthwhile benefits:

  • Being off the lawn on paving it seemed likely that dew could be less of a problem;
  • Working on the paving around the mount would be more convenient and dry;
  • By clearing out the adjacent shed it could be used as a dry location from which to control the equipment.

And so early in May I set about establishing Plan-B and soon afterwards putting it to work.

Pan1 Comp (Medium)

The view from the shed looking northwards is surprisingly quite good (see above) and I don’t know why I hadn’t considered this before. There are a few large trees to the north east, a high hedge along the western boundary and of course my house is still somewhat in the way but altogether it’s not too bad and for the first time I have a clear view of Polaris, as well as a whole new plethora of imaging targets!  Whilst this direction looks directly towards south London, being on the southern slope of the Greensand Ridge the worst of the city’s glow is fortunately obscured by the hill.  Furthermore, it is ironic that my house and the hedges also provide considerable protection from the local street lights, which I’m pleased to say are now turned off after midnight anyway.

Set-up

Local equipment layout the same as previously

I cut-back some of the adjacent vegetation to improve sightlines and ran a power cable from the house to the shed otherwise it’s exactly the same set-up which was being used at the main, south looking location on the patio by the house.  I looked into WiFi-control of the equipment but from the experience of others concluded it could be unreliable and instead considered using Teamviewer software via a USB Cat-5 repeater cable from the mount / shed computer to a second computer in the house.  However, given the distance of some 30 metres I finally decided to adopt a more robust LAN Cat-6 ethernet cable for this purpose. Unfortunately whilst this had worked successfully during testing in the house, I have so far been unable to get it to work outside and for now have had to operate the equipment from inside the shed, which has nonetheless proved to be a comfortable and effective alternative.

Being lazy and cautious about changing too much about the set-up, I levelled, aligned and reset the new location data of the tripod but kept all other settings the same for now.  I realise this is not ideal but initially just wanted to experience the new location and north sky to understand what was possible within the given field-of-view and identify any obvious problems.  Fortunately a settled period of good weather allowed me to try out the new location soon thereafter.

North Sky ViewX

White area shows optimum imaging area from Fairvale Observatory South – AKA ‘The Shed’

What I hadn’t expected on first use was that slewing and tracking would become more difficult and takes noticeably longer at higher latitudes, especially approaching Polaris.  Following subsequent enquiries and with some further thought it now makes sense.  At higher latitudes near and above about 70 degrees as the lines of Longitude are closer together, it makes the RA slew rate bigger and bigger the closer you get to the North Celestial Pole.  Of course the celestial pole is not coincident with the terrestrial pole, which means that those objects within the latitude of 90o minus the observer’s latitude – in my case this equals 39o – means that all those objects above 39o will be circumpolar from my point-of-view i.e. will rotate over the year around North Celestial Pole.  This is basic astronomy but hitherto I had not considered the implications for tracking and guiding before and will need to bear it in mind when selecting targets in the future.

M81 B (Large)

I had one particular target in mind but as it was only viable much later in the night, on this occasion I chose to start imaging the north sky for the first time with Bode’s Galaxy AKA M81 and the nearby Cigar Galaxy AKA M82; for comparison using low gain, long exposure on the first night (top of the page) and high gain, short exposure (below) on the following night.  Given the target’s DEC position of 70o I soon discovered the aforesaid tracking difficulties, which resulted in the RMS guiding error varying from 3’ to 20’ and deleterious consequences for the images!

 

Whilst I’m pleased with my very first north sky images, it is obvious I’ll need to return again with better guiding and much longer integration time.  On a positive note the general set-up worked very well and the shed provided an excellent place from which to operate the control and image capture equipment.  Furthermore, despite a few restrictions the overall view of the northern night sky is good and holds much promise for future, hitherto inaccessible imaging objects.  As a result of establishing this new site I intend to name the new north looking location Fairvale Observatory South or ‘The Shed Observatory’ (see mosaic above) and the principal, south looking location by the house Fairvale Observatory North or ‘The Patio Observatory’.  Altogether this marks a major breakthrough for my astronomy and I eagerly await the return of astronomical darkness on 20th July onward.

AstroNet ResultX

IMAGING DETAILS
Objects Bode’s Galaxy M81  &  Cigar Galaxy M82     
Constellation Ursa Major
Distance M81  11.8  &  M82  11.4 -12.4 million light-years
Size M81 26.9’ x 14.1’   &    M82 11.2’ x  4.3’
Apparent Magnitude M81 +8.0  &  M82 +8.4
 
Scope  William Optics GT81 + Focal Reducer FL 382mm  f4.72
Mount SW AZ-EQ6 GT + EQASCOM computer control
Guiding William Optics 50mm guide scope
  + Starlight Xpress Lodestar X2 guide camera & PHD2 control
Camera ZWO1600MM-Cool (mono)   CMOS sensor
  FOV 2.65o x 2.0o Resolution 2.05”/pix  Max. image size 4,656 x 3,520 pix   
EFW ZWOx8 + ZWO LRGB & Ha OIII SII 7nm filters 
Capture & Processing Astro Photography Tool + PS2,  Deep Sky Stacker & Photoshop CS2
Image Location Centre Image-B    RA 09:55:13.46    DEC 69:21:08.36  (19/0518) 
Exposures                       

                                       

                                         

A 18/05/18   10 x 180 sec L  + 5×180 sec RGB  (Total time: 75 minutes)    @ 139 Gain   21  Offset @ -20oC

B 19/05/18   45 x 60 sec L    + 15 x 60 sec RGB  (Total time: 90 minutes)    @ 300 Gain   50  Ofsett @ -20oC    

Calibration                    

                                        

A 15 x 180sec Darks  20 x 1/4000 sec Bias  10 x Flats LRGB  @ ADU 25,000  

B 15 x 60sec Darks     20 x 1/4000 sec Bias  10 x Flats LRGB  @ ADU 25,000  

Location & Darkness Fairvale Observatory South – Redhill – Surrey – UK       Typically Bortle 5
Date & Time (A)    18th  &   (B) 19th May 2018 @ +23.45h approx.