Spring’s Playground

The night sky has been full of surprises for me this Spring, in particular the very extensive presence of galaxies.  Their occurrence has been mostly associated with the constellations of Leo and Virgo but also less well known (to me) Coma Berenices, located between the two aforementioned constellations.  Despite being the 42nd constellation by size and relatively small with few bright stars, Coma Berenices is nonetheless something of a little gem and every bit as interesting as it’s more famous neighbours.

comaberenices

Previously part of the Leo Constellation, Coma Berenices was promoted to a constellation in the 16th Century and named after Queen Berenice II of Egypt; the asterism was previously considered to be the tuft of hair at the end of the lion’s (Leo) tail, which has now become the ‘Queens Hair’.  Though small, Coma Berenices contains eight Messier objects, several globular clusters and is rich in galaxies – including the northern part of the Virgo cluster – also with the North Galactic Pole located within its boundaries.  All-in-all the constellation forms an impressive and interesting part of the sky at this time of the year.

Notable objects are: M53 (NGC 5024), M85 (NGC 4382), M88 (NGC 4501), M91 (NGC 4548), M98 (NGC 4192), M99 (NGC 4254), and M100 (NGC 4321).  Whilst amongst the more famous features of the Coma Berenices is the Black Eye Galaxy (M64), the Needle Galaxy (NGC 4565) and the Coma Cluster of galaxies.

M64, AKA Black Eye Galaxy, Evil Eye Galaxy or the Sleeping Beauty Galaxy is the brightest in Coma Berenices and gets its name from the dark (black) dust band that obscures the stars in its bright core.

M64 Black Eye Galaxy WO GT81 & Canon 550D (modded) + FF | 10 x 180 secs @ ISO 1,600 | 11th April 2015

M64 Black Eye Galaxy
WO GT81 & Canon 550D (modded) + FF | 10 x 180 secs @ ISO 1,600 | 11th April 2015

NGC 4565 or the Needle Eye Galaxy is considered one of the finest examples of an edge-on galaxy, thus producing a slender, needle-like profile. Located 40 million light years away, almost directly above the North Galactic Pol, this giant barred spiral galaxy is about one third larger than the Milky Way and is more luminous that Andromeda.

NGC 4565 Needle Eye Galaxy WO GT81 & Canon 550D (modded) + FF | 10 x 180 secs @ ISO 1,600 | 11th April 2015

NGC 4565 Needle Eye Galaxy
WO GT81 & Canon 550D (modded) + FF | 10 x 180 secs @ ISO 1,600 | 11th April 2015

Some 60 million light-years away, M88 is located in the lower area of Coma Berenices, is over 100,000 light years diameter and one of the brightest galaxies of the Virgo Cluster.

 

M88 with other galaxies of the Virgo Cluster nearby. WO GT81 + Canon 550D (modded) + FF | 20 x 180 secs @ ISO 1,600 | 25th March 2015

M88 with other galaxies of the Virgo Cluster nearby.
WO GT81 + Canon 550D (modded) + FF | 20 x 180 secs @ ISO 1,600 | 25th March 2015

 

Apart from a few occasional opportunities since obtaining my new equipment last Summer, I have been yearning for more galaxies to image and have thoroughly enjoyed Spring’s veritable playground of galaxies that have filled the sky in their hundreds and sometimes thousands since February. Notwithstanding, my 81mm refractor though good struggles to obtain the detail of these magnificent, mind-blowing Deep Sky Objects and I can only look forward to the day of owning a larger aperture telescope and have mastered the art of long-exposure tracking, which I am still working on.  In the meantime, I now await the development of the Summer sky and another crack at objects first encountered last year.

All in a spin

It is now just over six months since acquiring my new astronomy equipment and therefore the first time I have experienced imaging DSO objects of the Spring night sky.  Following the passage of Leo, the main show has now well and truly arrived as the constellations of first Coma Berenices and then Virgo pass overhead, bringing with them a virtual fireworks type display of spectacular stellar features. sky-12h00 comaberenices virgo To DSO fans Spring means one thing – galaxies – too many to comprehend, making it difficult to know where to start.  In my case the detailed beauty of these galaxies will need to wait until I have a substantially larger telescope and can achieve much, much longer exposures.  In the meantime I just marvel at the spectacle and have been trying to image some of the more iconic of these springtime beauties.  Both constellations seem abound with galaxies but two groups are particularly exciting: the Coma Cluster and Virgo Cluster, within which there a large number of fine examples to choose from.

Just the tip of the iceberg: part of the Virgo Cluster that is crowded by galaxies.

Just the tip of the iceberg: part of the Virgo Cluster crowded with thousands of galaxies.

I was first drawn to Markarain’s Chain in the Virgo Cluster, a string of galaxies that form a gentle curve.  Stretched over some x ly the chain includes two Messier Objects – M86 & M84, together with NGC 4438, NGC 4435, NGC 4461, NGC 4458, NGC 4473 & NGC 4477 amongst many others.  In fact this entire part of the sky contains literally thousands of galaxies, of which Markarain’s Chain is just a small but interesting part.

Markarain's Chain WO GT81 & Canon 550D + FF | 15 x 180 secs @ ISO 1,600 | 26th March 2015

Markarian’s Chain
WO GT81 & Canon 550D + FF | 15 x 180 secs @ ISO 1,600 | 26th March 2015

Markarian's Chain (red)  &  some other galaxies (green) inverted.

Markarian’s Chain (red) & some other galaxies (green) – inverted image.

The one that got away

At the end of February the appearance of the Leo constellation marks the end of the winter sky and the transition to Spring.  After previously succeeding in imaging the Leo Triplet and M96 group, there remained one feature I still wanted to capture and, after a long period of difficult seeing conditions, I finally got my chance much later in March.

Just west of the lion’s head, south of the star Alterf (Lambda Leonis) is the 10th magnitude barred spiral galaxy NGC 2903, discovered by no less than William Herschel in 1784.  At 12.6’ x 6.0’ (80,000 ly) NGC 2903 is a little smaller than the Milky Way and too small for my equipment to show much detail but it is possible to see the spiral arms and the bright core, which is known to exhibit an exceptional rate of star formation.  However, the galaxy’s main notoriety is that this significant feature should have been overlooked by Messier though, to be fair, he did well with 103 other wonderful objects that I’m still working through.

NGC 2903 WO GT81 + Canon 550D & FF | 10 x 180 sec @ ISO 1,600 | 25th March 2015

NGC 2903
WO GT81 + Canon 550D & FF | 10 x 180 sec @ ISO 1,600 | 25th March 2015

Spring Skies

It’s three weeks since the Spring Equinox and two weeks since moving to British Summer Time (BST or daylight saving, GMT+1 hour), the result is that the night sky starts much later in the evening and is rapidly decreasing in length; it is just about six weeks before Astronomical Darkness completely ceases and will not come back until the end of July.  In addition, through a combination of European pollution and fine sand from the Sahara drifting over South East England this week, otherwise clear skies were badly obscured by the resulting haze.  As a result, since shortly before the full Moon on April 4th astronomy has not been possible – until last night.

The march of time and annual movements of the Solar System inevitably lead to a significant loss of quantity and quality of darkness at this time of the year.

The march of time and annual movements of the Solar System inevitably lead to a significant loss of quantity and quality of darkness at this time of the year.

Taken this morning, the contrails over Fairvale Observatory make a striking picture but, together with other pollution are having a significant impact on seeing conditions here at the moment.

Taken this morning, the contrails over Fairvale Observatory make a striking picture but together with other pollution are having a significant impact on seeing conditions here at the moment.

In the early evening twilight sky for a brief period between sunset and astronomical darkness, at the moment Venus is low on the western horizon.  Last night its apparent position was also close to the Pleiades star cluster, making an attractive widefield photograph.  Furthermore, shortly before Venus moved below the horizon and the sky had nearly reached Civil Darkness, the constellation Taurus also became visible to the south west with the bull’s ‘eye’ star Alderbaran and the v-shaped Hyades star cluster clearly evident.

Venus at sunset last night.

Venus at sunset last night: the Pleiades can only just be seen at 2-o’clock to Venus with Taurus on the far left.

Twenty minutes after sunset shortly before reaching Civil Darkness, the Pleiades and Taurus constellation are now quite clear.

Twenty minutes after sunset shortly before reaching Civil Darkness, the Pleiades and Taurus constellation are now quite clear.

Such a picture is a reminder that it is important to consider photography other than telescopic based planetary and deep sky imaging, especially as viewing and imaging conditions become more limited over the forthcoming Summer period.

Alternative Eclipse

With astronomy preparation is everything and so with the prospect of a solar eclipse here today I have been getting ready during the past week.  I looked at and imaged the Sun using my Skywatcher 150PL and a bespoke solar filter last year.  Whilst I was pleased with the results, such is the field-of-view of the 150PL that the resulting image only covers sections of the Sun and a full picture needs to be created using a mosaic; the upside of this is high magnification and therefore better detail of the Sun’s surface.  With the prospect of an eclipse I wanted to try and image the entire spectacle this time and therefore constructed a new solar filter to fit my William Optics GT81 refractor telescope, which has a wider field-of-view and all together better optics that would comfortably image the entire Sun.

Using Baader AstroSolar ND 5.00 safety film and some cardboard, I constructed a tube which fits exactly over the end of the telescope, with the film across the front but not stretched.  By restricting wavelengths the film removes about 99% of the Sun’s light and allows safe viewing but is very difficult to work with and must be treated carefully to ensure it is not damaged; birds can be attracted to the film’s silver finish and may peck holes in it when fitted, it is therefore important to be aware of such threats and, in my case, I also constructed a cardboard slip to cover the filter when the telescope is left unattended during use.  It is also very important to either block off or remove the guidescope and / or finder from the telescope, which without a filter could otherwise also focus on the Sun and either burn out or even worse, cause personal injury.

Home-made solar filter on the William Optics GT81.  When used I blocked-off the red dot finder and removed the finder scope in order to attach another home-made Sun finder.

Home-made solar filter on the William Optics GT81. When used I blocked-off the red dot finder and removed the finder scope in order to attach another home-made Sun finder.

The Players: having constructed the filter and with a clear sky on Wednesday I therefore tried it out and furthermore experimented with exposure settings, with good results.  Earlier in the month I had captured an excellent image of the quarter Moon too.  So I was ready to go, right?  Wrong!

The Moon @ First Quarter  | WO GT81 & Canon 700D + FF| 1/100th sec @ ISO 100 | 24th February 2015

The Moon @ First Quarter | WO GT81 & Canon 700D + FF| 1/100th sec @ ISO 100 | 24th February 2015

GT81 + Canon 700D & Baader ND 5.00 Solar Filter 1/500th sec @ ISO 100 | 18th March 2015

GT81 + Canon 700D & Baader ND 5.00 Solar Filter
1/500th sec @ ISO 100 | 18th March 2015

The Sun 1/20th Sec @ ISO 100 | 18th March 2015

The Sun
1/250th Sec @ ISO 100 | 18th March 2015

Despite my best planning it was cloudy here at Fairvale Observatory this morning, something that has been proving a major obstacle to any astronomy all this month.  Notwithstanding, I have instead experienced an ‘alternative eclipse’.

First, I recorded the change in light during the eclipse.  Though ‘only’ an 85% eclipse here the deterioration in light was very noticeable as well as other features: it got colder and the birds became quieter.

20th March 2015 Eclipse - the sky just after contact at 9.50 a.m.

20th March 2015 Eclipse – the sky at 9.50 a.m. sky just after contact.

Contact + 15 minutes

Contact + 15 minutes

At maximum 85% eclipse.

At maximum 85% eclipse, 9.30 a.m.

Next I ‘looked’ at the progress of the eclipse using Google Sky, which seemed to be very accurate.  It was fascinating to note that four other planets were lined up alongside the Sun at the same time, though of course would not be visible in the daytime sky even if it had been clear.

Eclipse as 'seen' by Google Sky

Eclipse as ‘seen’ by Google Sky

Google Sky screenshot.

Google Sky screenshot.

In between my own real time experience, I watched the BBC coverage of the event which provided some excellent images from the UK and especially from the air off the Faroe Islands where totality occurred.

Uk eclipse courtesy if the BBC.

UK eclipse courtesy if the BBC.

Eclipse totality at 28,000 ft from the Faroe Islands.

Eclipse totality at 28,000 ft from the Faroe Islands.

Baily's beads in hydrogen-alpha image. Faroe Islands March 2015.

Baily’s beads hydrogen-alpha image.   Faroe Islands March 2015.

Diamond Ring hydrogen-alpha image. Faroe Islands March 2015

Diamond Ring hydrogen-alpha image.
Faroe Islands March 2015

An eclipse is astronomy in action and inevitably I’m disappointed not to see and image the actual eclipse here but my alternative eclipse was still interesting and good fun. I was lucky to witness a total eclipse in France in August 1999 so that’s a 50% success rate so far.  The next partial eclipse in the UK will be on 12th August 2026 so I have time to prepare but, of course, will be unable to do anything about the weather again.  Fingers crossed then I suppose!

Another perspective.  Eclipse 2006, taken form the ISS the Moon's shadow passing over Turkey.

Another perspective. Eclipse 2006, taken from the ISS the Moon’s shadow passes over Turkey at 2,000 kph.

Moons

I am currently halfway through an Open University course on moons. Truth be told, after a less than satisfactory OU course on Orion (actually more a beginner’s guide to the Universe) recently, I had not intended to enrol for the moons course but at the last moment signed up.  In comparison, the experience this time has been outstanding: the quality, content and organisation of the course has been exceptional and moons have turned out to be much more interesting than I had expected.

ou_moon_art_2108_exploring_what_makes_a_moon

The combination of space travel and much improved earth-based astronomy, has recently led to an explosion in our knowledge of and about moons.  As a result there are now at least 176 known moons in the Solar System, with every possibility that this will continue to grow.  I have been surprised to learn that the largest moons even exceed the size of some planets.  Numerous space missions have provided amazing close-up pictures which show that many of these moons are far more interesting than previously thought, often with the presence of liquid which may even host life and in some cases volcanic activity is evident, including so-called cryo-volcanism – which is a new term to me.

Geological history of the Moon

Geological History of the Moon

Since starting DSO imaging in August I have somewhat neglected the Solar System but as last week we eventually started to study The Moon itself, it seemed like a good time to image our nearest neighbour once again.  Being just one day before reaching First Quarter, the detail along the Lunar terminator remains very good and I believe has made a beautiful picture.  With the Moon now in its waxing gibbous phase, DSO photography will be ruled out for at least another week, so it’s time to catch up with other matters of astronomy and the like and just enjoy our Moon, clear skies permitting.

IMG_4746crop

The Moon | WO GT81 + Canon 700D & FF | 1/100th sec @ ISO 100 | 24th February 2014

Big Cat Hunting

As we move closer to the Spring Equinox, the winter sky is already rapidly disappearing towards the western horizon and I have been left wondering what next?  I was concerned that after successfully imaging the Orion constellation and all its spectacular parts over the past four months, it would be a difficult act to follow, I needn’t have worried.  Already starting to appear from late-evening, a series of constellations are about to proceed across the night sky over the next few months which will provide an equally spectacular but different kind of show to Orion.

sky-spring

First of these is the constellation Leo, the celestial Lion, which it turns out is packed with galaxies and double stars.  The asterism of Leo is in the shape of a lion which, being dominated by various groups of galaxies holds much imaging promise, with my 81mm telescope providing an ideal field of view.

leo

Located behind Leo’s rear ‘leg’ is the best of these, known as the Leo Triplet or M66 Group, which consists of three galaxies: M66, M65 and NGC 3628.  Evidence suggests that these are linked in a gravitational dance with each other which, in the case of NGC 3628, has created a disturbed, unbarred galaxy with a faint 300,000 light-year star to the east.  M66 is an intermediate spiral galaxy, with a diameter of about 95,000 light-years and is the largest and brightest of the trio.  M65 is a smaller, barred intermediate galaxy.  The field of view has also captured other galaxies as well as the orange giant star 73 N Leonis.  All-in-all a wonderful image which I hope to return to in order to achieve even better detail using longer exposures, guiding and hopefully a larger telescope one day.

Leo Triplet: M66, M65 & NGC 3628 WO GT81 + modded Canon 550D & FF | 10 x 180 secs + calibration @ ISO1,600 | 21st February 2015

Leo Triplet: M66, M65 & NGC 3628
WO GT81 + modded Canon 550D & FF | 10 x 180 secs + calibration @ ISO1,600 | 21st February 2015

To the west of the Leo Triplet, in the direction of Leo’s dominant star Regulus, is another triple collection of galaxies called the M96 Group.  While a little fainter that the Leo Triplet, the M96 Group nonetheless makes a wonderful image accompanied, as it is, by numerous other galaxies and stars.  Of the latter, the giant orange 52 K Leonis star dominates the scene.

M69 Group: M105, NGC 3373 & NGC 3371 + other galaxies and orange giant 52 K Leonis WO GT81 + modded Canin 550D & FF | 10 x 180 secs & calibration @ ISO 1,600 @ 21st February 2015

M96 Group: M95, M96, M105, NGC 3373 & NGC 3371 + other galaxies and orange giant 52 K Leonis
WO GT81 + modded Canon 550D & FF | 10 x 180 secs & calibration @ ISO 1,600 @ 21st February 2015

It’s fair to say that the results of my big cat hunting around the constellation Leo have been a pleasant and successful surprise, with further promise still to come as Spring develops.  Watch this space!

Inverting the M96 Group image helps show better the galaxies and other significant features.

Inverting the M96 Group image helps show better the galaxies and other significant features.

Two’s Company

During the late 20th Century planetary relationships took on a new meaning as a metaphor for the difference between men and women, following the publication of John Gray’s book Men Are From Mars, Women Are From Venus.  Making a beautiful view at the moment, Venus is currently flirting with Mars in the early evening sky, for a very brief period low on the western horizon just after sunset. Its appulse with Mars can be easily seen with the naked eye but the view from Fairvale Observatory lasts only about 20 minutes and therefore requires good seeing conditions and quick action to get a picture.

At the weekend the view was even better, with the crescent of the New Moon adjacent to the field of view of Venus and Mars at the same time but my camera was not ready. Ideally I would like to image its apparition with a telescope but having to act quickly, last night I managed to get a quick photograph of the two planets using a DSLR camera and a 600 mm telephoto lens; the International Space Station flew by shortly afterwards but unfortunately too late get a photograph combining all three, timing is everything.

Later in the month the apparition of Venus will also include Uranus, making an even better show but will definitely not be a case of two’s company, three’s a crowd!

Picture saved with settings embedded.

Shining brilliant white, magnitude -3.9 Venus – top left & the smaller, faint magnitude +1.3, red planet of Mars – bottom right

STOP PRESS!

Another good evening sky this evening and tonight I manged to set-up the telescope to take this beautiful picture of Venus and Mars:

IMG_4731crop (Large)

Parting Shot

I thought I was finished with Orion for this winter but a high pressure system and clear weather provided an unexpected opportunity on Sunday evening that I couldn’t resist.  The good news: as Orion is passing the Meridian by 8.00 pm it provides an early start.  The bad news: being near Gatwick Airport, at this time of the evening the sky is full of aeroplanes at Fairvale Observatory, most of them flying directly through the Orion field of view!

With such good weather, I also decided to try out computer control for the first time.  I installed EQMOD before Christmas and have since been reading and watching tutorials on its use and experimented operating with it indoors.  Frankly I am somewhat intimidated by the large collection of software that is required to go to the next level with imaging and EQMOD is just the first step.  However, eventually I just have to do it and this would be the night to start!

EQMOD is a software project written and run by enthusiasts which provides computer control to the mount, thus dispensing with the SynScan handset. It also does much, much more and in general provides far superior control and flexibility, in particular linking control with a chosen planetarium programme – usually either the excellent Stellarium or Carte du Ciel, all of which is free!

Notwithstanding, I still have the major problem of polar alignment as my house completely obstructs all views of the northern sky. For the moment I adopted a belt-and-braces approach, first achieving polar alignment using the SynScan routine before switching to EQMOD control; once comfortable using EQMOD I plan to try out alignment software called Alignmaster, which I hope will allow me to completely dispel with SynScan.  On this occasion EQMOD worked a treat.  For alignment, just clicking on the object you want to see in the planetarium software (with which EQMOD is linked), the telescope slews and after accurately aligning the scope with the star you press a sync button. It’s so quick that it is easy to rapidly establish five or six (or more) star alignment points, thereby constructing a triangular matrix from which the mount can then track more accurately.  There are many other features I have yet to use but so far I like what I see and am in awe of those who have written and maintain the system.

With EQMOD computer control thus established successfully, I set out to image some old ‘friends’ in Orion.  Having only recently acquired a modded Canon 550D, it seemed only right to take another look at M42 the Great Orion Nebula and The Flame and Horsehead nebulae.

The impact of modification was immediately evident with M42, it now being much redder than before and with greater detail exhibited in the nebulosity.  The tracking also looked OK, though a few stars looked a little bloated, suggesting there’s still work to do on another day i.e. autoguiding.

Orion's Sword: M42 The Great Orion Nebula, Running Man Nebula & NGC 1981 Star Cluster WO GT81 + modded Canon 550D & FF | 10 x 180 secs @ ISO 800 & darks calibration | 8th February 2015

Orion’s Sword: M42 The Great Orion Nebula, Running Man Nebula & NGC 1981 Star Cluster
WO GT81 + modded Canon 550D & FF | 10 x 180 secs @ ISO 800 & darks calibration | 8th February 2015

The Flame and Horsehead nebulae also show similar improvements and, in the case of the Horsehead, the actual ‘head’ is much clearer than before.

NGC 2024 Flame Nebula & Horsehead Nebula WO GT81 + modded Canon 550D & FF | 10 x 180 secs @ ISO 800 & darks calibration | 8th February 2015

NGC 2024 Flame & Horsehead Nebula; NGS 2023 relection nebula just below/left of the Horsehead  
WO GT81 + modded Canon 550D & FF | 10 x 180 secs @ ISO 800 & darks calibration | 8th February 2015

With Orion by now well past the Meridian and the weather holding up well I then decided to try my luck once again with Jupiter, which by now is well located high in the south east sky.  Unfortunately like sport, astronomy is a game of two halves.  Following the success using EQMOD my experience with Jupiter was a complete failure.

I had previously encountered significant problems with my webcam last year, that mostly stemmed from problems with the capture software and it was here that I was to stumble (fall more like it) once again.  Initially Firecapture seemed to boot up OK and recognised the camera, though try as I may I could not see Jupiter on the screen; I knew it was there as I had previously centred and focussed it there.  I therefore decided to reboot the software, which was a big mistake.  This time Firecapture would not recognise the camera and on trying to de-bug the problem I ended up with the dreaded ‘black screen of death’.  Here was the downside of computer control, with the black screen going nowhere I also lost all control of the mount!  I therefore retreated to SynScan, parked the telescope and deliberately crashed the computer; I have not yet investigated the problem further since then – watch this space!

It was therefore something of an ignominious end to the evening.  However, I was still buoyed by the earlier success of EQMOD and more than happy with what may be my parting shot of Orion for this winter. Au revoir.

Horsehead Nebula with the NGC 2023 reflection nebula, bottom left

Horsehead Nebula with the NGC 2023 reflection nebula, bottom left

Orion in Perspective

Perspective:

  • The appearance of objects relative to each other, as determined by their distance from the viewer, or the effects of this distance on their appearance – The Free Dictionary.
  • Noun: The art of representing three-dimensional objects on a two-dimensional surface so as to give the right impression on their height, width, depth and position in relation to each other – Oxford English Dictionary

I have just finished an Open University MOOC (Massive Open Online Course) on Orion, which it has to be said was mixed in its content and quality.  Notwithstanding, the course provided a useful basic understanding of objects in the Universe, particularly Orion, how they related to each other and as a whole. Through my professional experience I am used to viewing and understanding objects in 3D, all the more so since computer modelling has provided a tool with which to visually illustrate such spatial shapes and relationships.  Although it is obvious that such relationships also describe the astronomical space in which we exist i.e. the Universe, and commonly describe the location of stars and other heavenly bodies by their distance, RA and DEC, I have seen very few of these objects visually modelled for common asterisms or constellations.

The constellation of Orion is probably the main feature of the winter night sky and it is certainly my favourite, particularly when looking at its rich content: M42 the Great Orion Nebula, the Running Man Nebula, the Horsehead and Flame Nebulae, M78, Barnard’s Loop and many more.  Sadly after more than 4-months imaging these objects for the first time, Orion is now starting to rise very early in the evening and by 11pm is well past the Meridian – it will not be long before this magnificent feature will be gone for another year, until on the very early mornings of next October it will reappear again, can’t wait!

orion

With my new found interest in astroimaging I have almost exclusively used a DSLR camera and focused my attention on DSO features, using a telescope and GoTo mount, somewhat neglecting the use of the camera for basic widefield photography.  Apart from the attraction of playing with my new toys, I was put off by the lack of a suitable camera attachment and a wide angle lens; because of the inherent crop factor associated with the cropped digital sensors employed in most DSLR cameras (except very expensive full frame cameras), the real focal length of a camera lens will be extended and hence the field-of-view narrowed – in my case with a x1.61 crop factor, a 50mm lens operates at an apparent focal length of 80mm!  However, using the top off an old camera tripod I recently I managed to jerry rig the camera onto the GoTo mount, thus providing tracking and enabling longer exposures.  It’s only a start but there is great promise in such photography, as seen on this excellent website, and I intend to pursue more of these images with a better way of attaching the camera and decent wide-angle lens when I can.

As a result, on Christmas Eve I obtained my first reasonable image of the whole Orion constellation, which with better exposure shows the detail, beauty and context of the numerous DSO items contained within and images previously noted.

The Orion Constellation Canon 700D | 27 x 10 secs @ ISO 1,600 & calibration | 24th December 2014

The Orion Constellation
Canon 700D & Telephoto 200 mm | 27 x 10 secs @ ISO 1,600 & calibration | 24th December 2014

In the early days of my astroimaging about 12 months ago, I found focussing something of a challenge but, with the assistance of the wonderful Bahtinov mask and Live View on-screen computer focusing, I thought that had become a thing of the past, unfortunately not!  Guided by the infinity mark on the camera lens for focussing, I set out to image some of Orion’s more elusive nebulosity, in particular Barnard’s Loop, with which I am fascinated – its enormous size of some 10o or 600 arcminutes and complete absence from ordinary view are both intriguing, exciting and challenging.  I had tried to photograph this feature before, which completely envelops Orion’s Sword and extends up towards Betelgeuse, but to no avail.  With my bodged but useable camera set-up I tried again two weeks ago.  This time the problem was once again focussing; it turns out that with widefield astroimaging using a standard camera lens, infinity does not necessarily mean infinity, as there is some leeway either side.  The out-of-focus images that resulted could therefore not be stacked but, using a single image, calibration and extensive post-process stretching in Photoshop, Barnard’s Loop was finally revealed and even Lambda Orionis above Betelgeuse and Bellatrix, albeit very noisy and out of focus.  Notwithstanding, I am pleased with this enticing glimpse and will return another day to rectify the problems.

 

The Orion Constellation & Barnard's Loop (up / north is left) AZ-EQ6 Mount + Canon 550D & 200mm Telephoto | 180 secs @ ISO 1,600 & calibration | 22nd January 2015

The Orion Constellation & Barnard’s Loop (up / north is left)
AZ-EQ6 Mount + Canon 550D & Telephoto 200 mm | 180 secs @ ISO 1,600 & calibration | 22nd January 2015

Since my first decent image of the Great Orion Nebula on a very early morning at the beginning of last October, I have had hours of fun and some frustration imaging various parts of the Orion Constellation.  But despite my new familiarity with the Orion constellation, 3D modelling and, I’d like to think, good spatial awareness, I was still pleasantly surprised and impressed by this wonderful 3D video of the constellation produced by the Space Telescope Science Institute for NASA and used during the aforementioned Open University course, which really does put it all into perspective: The True Shape of Orion.