Shrinking The Universe

Hitherto, most of my astrophotography has concentrated on a variety of specific objects that work within the 2.65o x 2.0o field-of-view provided by the combination of my William Optics GT81 refractor and ZWO ASI1600MM-Cool camera.  After recently pairing the aforesaid ZWO mono camera with a Samyang 135 lens (often marketed elsewhere as the Rokinon 135) my astrophotography world has expanded dramatically to an enormous 7.50o x 5.67o, some x8 larger than before.  As a result, this excellent lens that also captures great detail, provides new opportunities to image some of the very large features that abound throughout the Universe without having to resort to a mosaic imaging; this a great advantage when working in UK weather conditions which usually provides less imaging time than required. 

Above, Cygnus-X Region & notable nearby objects: The red box appproximately outlines the image area, which in this plan is presented upside-down compared to the main image. The numerous red shapes define the location of the HII objects that make up the DWB catalogue (19 is the Crescent nebula). Just beyond to the left is the North America Nebula (NGC7000) and below the SNR Cygnus Loop, AKA the Veil Nebula (NGC 6960 & 6992).

In this case I chose to frame the image in such a way as to encompass some familiar objects, such as the Butterfly Nebula (IC1318) and the Crescent Nebula (NGC6888) anchored by Sadr, the yellow-white supergiant star that stands out from within the very large Cygnus-X region.  Processed here in HOO, with 6-hours integration time and full calibration (darks, flats & flat darks), the final image provides a magnificent view of this large, interesting region that augurs well for future widefield imaging with this new rig.  I’m particulalry intrigued by the bluish feature at about 8.0 o’clock of the Crescent Nebula, which I now believe to be associated with WR-134: a bubble-like structure some 50 light-years in diameter consisting of OIII rich light formed by an intense wind emanating from the Wolf-Rayet star at it’s centre. The breadth of view it provides can encompass myriad of objects in exceptional detail, thereby providing a wider context that is simply awe-inspiring to see – it’s just like shrinking the Universe!

    

Astrometry image plan
 IMAGING DETAILS
ObjectSadr Region
ConstellationCygnus
Distance+5,000 light-years
Size Full FOV – see below            
Apparent Magnitude+/- 7.0
  
Scope  / LensSamyang 135 @f2.8  
MountSW AZ-EQ6 GT + EQASCOM computer control & Cartes du Ciel
GuidingSky-Watcher EvoGuide 50ED
 + Starlight Xpress Lodestar X2 camera & PHD2 guiding
CameraZWO1600MM-Cool mono  CMOS sensor
 FOV 7.5o x 5.67o Resolution 5.81”/pix  Max. Image Size 4,656 x 3,520 pix   
EFWZWOx8 EFW & 31mm ZWO LRGB & 7nm Narrowband filters 
Capture & ProcessingAstro Photography Tool + PHD2 + Deep Sky Stacker, PixInsight v1.8.8-12, Photoshop CC, Topaz Denoise
Image Location & OrientationCentre  RA 20:16:40.452      DEC +38:50:14.404                         Right = North   Top = East 
Exposures36 x 500 sec Ha, 36 x 300 sec OIII Total Integration Time: 6hr      
 @ 139 Gain   21  Offset @ -10oC    
Calibration5 x 300 sec Darks  15 x Flats & Flat Darks
Location & DarknessFairvale Observatory – Redhill – Surrey – UK        Typically Bortle 5-6
Date & Time10th & 12h August 2022  @ +22.00h  
WeatherApprox. 25oC   RH 50 – 60%                  🌙 100% Full Moon