Nice But Dim

Abell 21 Combo All 2018 2020 RGB FINAL CROP (Large)

Contrary to appearance, a planetary nebula is not a planet but a emission nebula, an expanding shell of glowing ionized gas discharged from a red giant star at the end of its life.  At this late stage of stellar evolution the star runs out of fuel to burn, with the result that the outer layers are blown away and expand into space typically in the shape of a ring or bubble.  At the centre of the planetary nebula is the remnant of the star, which is left as a White Dwarf.

JEL_ITV_ElementFormation_BG-Plate_Updated_23Oct17

The term “planetary” nebula is therefore completely misleading and derives its name from none other than William Herschel, in an era when such objects were thought to look like planets.  We now believe some 10,000 planetary nebulae exist throughout the Milky Way, though only 1,500 have been identified (see NASA HST images below), including M57 the Ring Nebula and M27 the Dumbbell Nebula both popular amongst astrophotographers.

HST PNSuch objects are usually short lived and unfortunately small and faint, making them a challenge for smaller telescopes and Bortle 5-6 skies, such as I have at Fairvale Observatory.  However, I recently decided to return to the Medusa Nebula, a planetary nebula which I previously had imaged as a test in February 2018.  On that occasion the integration time was limited to only 75 minutes (see below), now the objective was to build on the previous data and thereby hopefully improve the image quality.

Abell 21 RGB 2018 Final (Large)

Combining the data from 2018 with that of 2020 resulted in a significant increase in total integration time to just over 5-hours, with the impact on the final image clearly noticeable (see top-of-the-page cropped and below uncropped – showing the difference in alignment between pre-plate solving 2018 & 2020 data), mainly in the form of reduced noise and better colour saturation.  I am a little surprised that the improvement was not greater but perhaps it’s a case of either (a) considerably more time is still required, particularly in the weak OIII wavelength,  or (b) it’s really too much of a challenge for my equipment?

However, looking at other images of the Medusa Nebula and considering its size and very low surface brightness, it’s obvious this is one of the more difficult planetary nebula objects to image and all things considered I’m happy with outcome new of this new version.

Abell 21 Combo All 2018 2020 RGB FINAL

IMAGING DETAILS
Object The Medusa Nebula  AKA Abell-21,  Sharpless 2-274 or PK205+14.1
Constellation Gemini
Distance 1,500 light-years
Size Approx.. 12’ x 9’
Apparent Magnitude +15.99
 
Scope  William Optics GT81 + Focal Reducer FL 382mm  f4.72
Mount SW AZ-EQ6 GT + EQASCOM computer control & Cartes du Ciel
Guiding William Optics 50mm guide scope
  + Starlight Xpress Lodestar X2 camera & PHD2 guiding
Camera ZWO1600MM-Cool mono  CMOS sensor
  FOV 2.65o x 2.0o Resolution 2.05”/pix  Max. image size 4,656 x 3,520 px   
EFW ZWOx8 + ZWO LRGB & Ha OIII SII 7nm filters 
Capture & Processing Astro Photography Tool + PHD2 +  Deep Sky Stacker & Photoshop CS3
Image Location              & Orientation Centre  RA 05:55:38      DEC 01:59:40  @20.49h                     

Image rotated 180o for presentation Top = South     

Exposures 37 x 300 sec  Ha, 25 x 300 sec RGB

Total Time 5hr 10 min   

  @ 139 Gain   21  Offset @ -20oC    
Calibration 5 x 300 sec Darks  20 x 1/4000 sec  Bias  10 x  Ha & OIII Flats  

@ ADU 25,000

Location & Darkness Fairvale Observatory – Redhill – Surrey – UK        Typically Bortle 5-6
Date & Time 11th February 2018  + 2nd &  3rd March 2020  @ +21.00h  
Weather Approx. 5oC   RH <=75%                  🌙 +29% waxing

One thought on “Nice But Dim

  1. Pingback: Reflections 2020 | WATCH THIS SPACE(MAN)

Leave a comment